SUSY-Yukawa Sum Rule at the LHC

David Curtin

arXiv:1004.5350, arXiv:XXXX.XXXX In Collaboration with Maxim Perelstein, Monika Blanke

Cornell Institute for High Energy Phenomenology

Phenomenology 2010 Symposium Madison, Wisconsin

Monday, May 10 2010

- Hierarchy problem: In the SM, Higgs mass receives quadratically divergent corrections, most importantly from the top quark
- In SUSY, top contribution cancelled by stop

(a)
$$h \cdots y_t y_t \cdots h$$
 (b) $h \cdots y_t y_t^2 \cdots h$

• This relies on both particle content and coupling relations. We want to test the coupling relations.

How to probe the Quartic Higgs Coupling?

Look at diagonal sfermion mass terms!

Look at stop/sbottom *LL* mass terms at tree level:

 $\begin{array}{rcl} M_{\tilde{t}_{L}\tilde{t}_{L}}^{2} &=& M_{L}^{2} + \hat{m}_{t}^{2} + g_{uL}\hat{m}_{Z}^{2}\cos 2\beta = m_{t1}^{2}c_{t}^{2} + m_{t2}^{2}s_{t}^{2} & (1) \\ M_{\tilde{b}_{L}\tilde{b}_{L}}^{2} &=& M_{L}^{2} + \hat{m}_{b}^{2} + g_{bL}\hat{m}_{Z}^{2}\cos 2\beta = m_{b1}^{2}c_{b}^{2} + m_{b2}^{2}s_{b}^{2} & (2) \\ \text{Soft masses Higgs Quartic Coupling D-term contributions measurable} \end{array}$

(1) - (2) eliminates the soft mass:

$$\hat{m}_t^2 - \hat{m}_b^2 = m_{t1}^2 c_t^2 + m_{t2}^2 s_t^2 - m_{b1}^2 c_b^2 - m_{b2}^2 s_b^2 - \hat{m}_Z^2 \cos^2 \theta_w \cos 2\beta$$

We call this the **SUSY-Yukawa Sum Rule:** It has its origins in the same coupling relations that cancel higgs mass corrections.

We want to test this sum rule at a collider!

Defining an observable to test the Sum Rule

• Assume SUSY-like particle content $(\tilde{t}_L, \tilde{b}_L)$, \tilde{t}_R , \tilde{b}_R but not the SUSY coupling relations.

• Before EWSB,
$$M_{\tilde{t}}^2 = \begin{pmatrix} M_L^2 \\ M_L^2 \end{pmatrix}, M_{\tilde{b}}^2 = \begin{pmatrix} M_L^2 \\ M_b^2 \end{pmatrix}$$

 After EWSB, can parameterize quartic higgs coupling 'model-independently':

$$(M_{\tilde{t}}^2)_{11} \to M_L^2 + v^2 Y_{11}^t \quad , \quad (M_{\tilde{b}}^2)_{11} \to M_L^2 + v^2 Y_{11}^b$$

Define a new observable to probe the quartic higgs coupling:

$$\Upsilon \equiv \frac{1}{v^2} \left(m_{t1}^2 c_t^2 + m_{t2}^2 s_t^2 - m_{b1}^2 c_b^2 - m_{b2}^2 s_b^2 \right) \\ = Y_{11}^t - Y_{11}^b \text{ at tree level}$$

Cornell University

SUSY prediction for Υ & Radiative Corrections

Tree-Level Prediction for ↑ from SUSY-Yukawa Sum Rule

$$\begin{split} \Upsilon_{\text{SUSY}}^{\text{tree}} &= \frac{1}{v^2} \left(\hat{m}_t^2 - \hat{m}_b^2 + m_Z^2 \cos^2 \theta_W \cos 2\beta \right) \\ &= \begin{cases} 0.39 & \text{for } \tan \beta = 1 \\ 0.28 & \text{for } \tan \beta \to \infty \text{ (converges quickly for } \tan \beta \gtrsim 5) \end{cases} \end{split}$$

• In a generic theory, only 'requirement' is
$$|\Upsilon| \lesssim 16\pi$$
.

- Worst case scenario (SuSpect) →
- Can narrow predicted range with more measurements (see later).

TeV-scale SUSY: $|\Upsilon| \lesssim 1$.

- Fully measuring Υ requires lepton collider.
- Can make some progress at LHC in favorable regions of MSSM parameter space. ⇒ Could then use ↑ to constrain stop/sbottom parameters.
- Demonstrate feasibility of partial Υ-measurement with a particular Benchmark Point:

Parameters:

$\tan\beta$	<i>M</i> ₁	<i>M</i> ₂	M ₃	μ	M _A	M _{Q3L}	M _{tR}	A_t
10	100	450	450	400	600	310.6	778.1	392.6

Spectrum: (GeV)

m_{t1}	m_{t2}	s t	m _{b1}	m _{b2}	s _b	m _ĝ	$m_{ ilde{\chi}_1^0}$
371	800	-0.095	341	1000	-0.011	525	98

Measuring part of Υ

• Small mixing angles and light $\tilde{t}_1, \tilde{b}_1 \Longrightarrow$ rewrite

$$\Upsilon = \underbrace{\frac{1}{v^2} \left(m_{t1}^2 - m_{b1}^2 \right)}_{\Upsilon'} + \underbrace{\frac{s_t^2}{v^2} \left(m_{t2}^2 - m_{t1}^2 \right)}_{\Delta \Upsilon_t} - \underbrace{\frac{s_b^2}{v^2} \left(m_{b2}^2 - m_{b1}^2 \right)}_{\Delta \Upsilon_b}$$

• Most of $\Upsilon = 0.423$ comes from $\Upsilon' = 0.350$. $\Delta \Upsilon_t \leq O(0.1)$ can be estimated ¹. $\Delta \Upsilon_b$ can't be measured at LHC.

• We will measure Υ'

- Need to determine m_{t1} , m_{b1}
- Extract kinematic- and M_{T2}-edges to det all the masses $\Rightarrow \Upsilon'$

MP Weiler 2008

• Analyze the process² $\tilde{g}\tilde{g} \rightarrow 2\tilde{b}_1 + 2b \rightarrow 4b + 2\tilde{\chi}_1^0$.

•
$$\sigma_{\tilde{g}\tilde{g}} \approx 11.6 \text{ pb} @ \sqrt{s} = 14 \text{ TeV}.$$

- Impose basic p_T, MET-cuts and require 4 b-tags.
- Use $\mathcal{L} = 10 \text{ fb}^{-1}$. After cuts we are left with 4800 signal events.
- No SUSY-BG. SM-BG suppressed by b-tag requirement.
- Even with parton-level pure signal, full mass extraction is challenging!

²MadGraph/Madevent & BRIDGE

Edge Extraction & Mass Measurement

- To measure masses at hadron colliders with invisible massive particles in the final state, we go Edge Hunting!
- Distributions of M_{T2}-subsystem-variables³ and M_{bb} show edges which tell us mass combinations.

• Big Problem: Combinatorial Error (especially for M_{T2} 's).

We are able to successfully measure $M_{bb},\ M_{T2}^{210}(0)$ and $\ \Rightarrow\ M_{T2}^{220}(0)$ edges

mass	th.	68 % c.l.
m _{b1}	341	(316, 356)
m _ĝ	525	(508, 552)
$m_{\tilde{\chi}_1^0}$	98	(45*, 115)

³Barr, Lester, Stephens, 2003; Cho, Choi, Kim, Park 2008; Burns, Kang, Matchev, Park 2009

LEP bound

(II) Stop Pair Production

• Analyze the process $\tilde{t}_1 \tilde{t}_1^* \rightarrow t \bar{t} + 2 \tilde{\chi}_1^0$.

•
$$\sigma_{\tilde{t}_1\tilde{t}_1^*} \approx 2 \text{ pb } @ \sqrt{s} = 14 \text{ TeV}.$$

Impose standard cuts & use hadronic tops⁴.

- Use $\mathcal{L} = 100 \text{ fb}^{-1}$. After cuts: 1481 signal and 105 BG events.
- Easy to extract M_{T2}^{max} edge \implies Gives $m_{t1}(m_{\tilde{\chi}_{4}^{0}})$

•	Combine with (I) \rightarrow		th.	68 % c.l.
		m_{t1}	371	(356, 414)

Cornell University

⁴Meade, Reece 2006

Υ' Measurement and SUSY-prediction for Υ

Putting all these measurements together, we get

	th.	meas.
Υ'	0.350	$0.525\substack{+0.20\\-0.15}$
Υ	0.423	

The measurements of the $\tilde{b}_1, \tilde{t}_1, \tilde{g}, \tilde{\chi}_1^0$ masses also allow us to make the SUSY-prediction for Υ more precise:

• Confirmation of SUSY-Yukawa Sum Rule

 $\hat{m}_t^2 - \hat{m}_b^2 = m_{t1}^2 c_t^2 + m_{t2}^2 s_t^2 - m_{b1}^2 c_b^2 - m_{b2}^2 s_b^2 - \hat{m}_Z^2 \cos^2 \theta_w \cos 2\beta$

would be strong support for TeV-scale SUSY as the solution for hierarchy problem.

- Full measurement will have to wait for Lepton Collider.
- Can make significant progress at LHC in some regions of parameter space.

Gluino Pair Production: Kinematic Edge

•
$$M_{bb}^{\max} = \sqrt{\frac{(m_{\tilde{g}}^2 - m_{b1}^2)(m_{b1}^2 - m_{\tilde{\chi}_1^0}^2)}{m_{b1}^2}}$$

- With known decay chain assignments get $(M_{b_1b_2}, M_{b_3b_4})$ for each event, plot M_{bb} -distribution \Rightarrow edge at 382 GeV.
- Main problem: Combinatorial Background!
- Can reduce CB with ΔR cuts and dropping largest M_{bb} 's per event.

Gluino Pair Production: M_{T2} -subsystem Edges

- The distributions of M_{T2} subsystem variables⁵ also have edges we can measure. Look at $M_{T2}^{210}(0)$.
- Combinatorial Background is more dangerous.
 - To calculate M²¹⁰₇₂, have to divide 4b into an upstream and downstream pair: 6 possibilities.
 - The M_{T2} -distribution for wrong pairings is more featured than M_{bb} .
- One way to reduce CB: Drop largest 2 M²¹⁰/_{T2}'s per event →

⁵Barr, Lester, Stephens, 2003; Cho, Choi, Kim, Park 2008; Burns, Kang, Matchev, Park 2009

 $M_{T2}^{210}(0)$ without combinatorial error reduction

Gluino Pair Production: M_{T2} -subsystem Edges

Another way to reduce CB: Use Kinematic Edge Measurement! H_{12}^{H} Possible M_{bb} pairs: (M_{12}, M_{34}) , (M_{13}, M_{24}) , (M_{14}, M_{23}) H_{120}^{H} For ~30% of events, situation like:

$$\xrightarrow{M_{12} M_{14}} \xrightarrow{M_{23} M_{34}} \xrightarrow{M_{13} M_{24}} \xrightarrow{M_{bb}^{max}}$$

Can deduce correct decay chain assignment!

For edge measurement, require two methods to agree!

edge	th.	measurement		mass	th.	68 % c.l.
M _{bb}	382	395 ± 15		m_{b1}	341	(316, 356)
$M_{T_2}^{210}(0)$	321	$314\pm13GeV$	\Rightarrow	$m_{\tilde{g}}$	525	(508, 552)
$M_{T2}^{220}(0)$	507	$492\pm14\text{GeV}$		$m_{ ilde{\chi}_1^0}$	98	(45, 115)

(Imposed $m_{\tilde{\chi}^0_*} > 45 \,\text{GeV}$ bound from LEP measurement of invisible Z decay width.)

Cornell University