Majorana and Dirac neutralinos in N=1/N=2 hybrid SUSY

A. Freitas

University of Pittsburgh

S. Y. Choi, D. Choudhury, A. Freitas, J. Kalinowski, J. M. Kim, P. M. Zerwas, arXiv:1005.0818

- **1**. N=2 SUSY and Dirac gauginos
- 2. Collider signatures of electroweak Dirac gauginos
- 3. Electroweak adjoint scalars

N=2 SUSY and Dirac gauginos

N=2 SUSY gauge multiplet:

- One 2-helicity vector boson
- **Two** 2-helicity Majorana fermions
- One complex scalar

Superfields	Spin 1	Spin 1/2	Spin 0	
SU(3) gauge	g	${\widetilde g}$		N=2 gauge
SU(3) chiral		${\widetilde g}'$	σ_C	∫hypermultiplet
SU(2) gauge	$W^{\pm,0}$	$ ilde W^{\pm,0}$		
SU(2) chiral		$ ilde W^{\prime\pm,0}$	σ_I	<u>}</u>
U(1) gauge	В	$ ilde{B}$		
U(1) chiral		$ ilde{B}'$	σ_Y	5

Other fields:

Benakli, Moura '08

- $\blacksquare \hat{H}_u + \hat{H}_d \text{ from chiral/anti-chiral hypermultiplet}$
- N=1 matter multiplets (other N=2 components very heavy)

Gaugino states

Example: SU(3) sector Superpotential and SUSY-breaking mass terms [SU(3) as example]: $\mathcal{L}^{m}_{QCD} = -\frac{1}{2} \left[M'_{3} \operatorname{Tr}(\overline{\tilde{g}}' \tilde{g}') + M_{3} \operatorname{Tr}(\overline{\tilde{g}} \tilde{g}) + M^{D}_{3} \operatorname{Tr}(\overline{\tilde{g}}' \tilde{g} + \overline{\tilde{g}} \tilde{g}') \right]$ $\rightarrow \text{Matrix in } \{ \tilde{g}', \tilde{g} \} \text{-space:} \qquad \mathcal{M}_{g} = \begin{pmatrix} M'_{3} & M^{D}_{3} \\ M^{D}_{3} & M_{3} \end{pmatrix}$

■
$$M'_3 \rightarrow \infty$$
: recover MSSM gluino sector
■ $M_3 = M'_3 = 0, M^D_3 \neq 0$: two Majorana states \tilde{g}', \tilde{g} paired to one Dirac state \tilde{g}_D

intermediate: two Majorana mass eigenstates:

$$\begin{pmatrix} \tilde{g}_{1R} \\ \tilde{g}_{2R} \end{pmatrix} = \mathcal{U}^T \begin{pmatrix} \tilde{g}'_R \\ \tilde{g}_R \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} \tilde{g}_{1L} \\ \tilde{g}_{2L} \end{pmatrix} = \mathcal{U}^\dagger \begin{pmatrix} \tilde{g}'_L \\ \tilde{g}_L \end{pmatrix}$$

Electroweak sector

Charginos: 3 charged Dirac mass eigenstates (\$\tilde{W}\$, \$\tilde{W}\$', \$\tilde{H}\$)
 Neutralinos: 6 ntrl. Majorana mass eigenstates (\$\tilde{B}\$, \$\tilde{B}\$', \$\tilde{W}\$, \$\tilde{W}\$', \$\tilde{H}\$_u\$, \$\tilde{H}\$_d\$)

Collider signatures of electroweak Dirac gauginos

<u>LHC</u>

Chirality of neutralino interactions differ between Majorana and Dirac theory

 $\label{eq:spin} \rightarrow \text{Spin correlation effects in decay } \tilde{q}_L \rightarrow q \tilde{\chi}_2^0 \rightarrow q \, l^\pm \, \tilde{l}_R^\mp \rightarrow q \, l^\pm \, l^\mp \, \tilde{\chi}_1^0$ (for $m_{\tilde{\chi}_2^0} > m_{\tilde{l}_R} > m_{\tilde{\chi}_1^0}$)

Majorana: $\tilde{\chi}_2^0$ can decay into sleptons of \pm charge: $\tilde{q}_L \rightarrow q \, \tilde{\chi}_2^0 \rightarrow q \, l_n^{\mp} \tilde{l}_R^{\pm} \rightarrow q \, l_n^{\mp} \, l_f^{\pm} \, \tilde{\chi}_1^0$

Dirac:
$$\tilde{\chi}_{D2}^{0}$$
 decays only to $\tilde{l}_{\mathsf{R}}^{-}$,
while $\tilde{\chi}_{D2}^{0c}$ decays only to $\tilde{l}_{\mathsf{R}}^{+}$:
 $\tilde{q}_{L} \rightarrow q \, \tilde{\chi}_{D2}^{0c} \rightarrow q \, l_{n}^{-} \, \tilde{l}_{R}^{+} \rightarrow q \, l_{n}^{-} \, l_{f}^{+} \, \tilde{\chi}_{D1}^{0c}$
 $\tilde{q}_{L}^{*} \rightarrow \bar{q} \, \tilde{\chi}_{D2}^{0} \rightarrow \bar{q} \, l_{n}^{+} \, \tilde{l}_{R}^{-} \rightarrow \bar{q} \, l_{n}^{+} \, l_{f}^{-} \, \tilde{\chi}_{D1}^{0}$

 \rightarrow Effect on ql^{\pm} invariant mass distributions

Neutralino cascade decays

CP-invariance relates decay distributions of \tilde{q}_L and \tilde{q}_L^* for Dirac case

Chargino cascade decays

Selectron production in e^-e^- collisions

Majorana neutralinos can mediate same-sign same-chirality selec-

tron production in e^-e^- collisions

Keung, Littenberg '83 Aguilar-Saavedra, Teixeira '03

Neutralino production in e^+e^- collisions

MSSM limit: p-wave, t + u channels Dirac limit: s-wave, t channel

 $(m_{ ilde{\chi}^0_2} = m_{ ilde{\chi}^0_{D2}} = 200 \,\, {
m GeV}, \,\,\, m_{ ilde{e}_L} = 400 \,\, {
m GeV})$

Electroweak adjoint scalars

N=2 gauge hypermultiplet include (*R*-even) complex scalars σ_C , σ_I , σ_Y

(EWSB: σ s mix with Higgs bosons)

- \rightarrow If light enough σ s can be produced at colliders
- \rightarrow Do not couple to SM fermions (except through mixing)

Main decay channels:

$M_{\sigma} < M_{\rm SUSY}$	$M_{\sigma} > M_{\mathrm{SUSY}}$
$\sigma_Y o \gamma\gamma$ (lloop)	$\sigma_Y o ilde{f} ilde{f}^*, ilde{\chi} ilde{\chi}$
$\sigma_I^\pm o W^\pm \gamma$ (lloop)	$\sigma_I^{\pm} ightarrow ilde{f} ilde{f}'^*, ilde{\chi}^{\pm} ilde{\chi}^0$

Drell-Yan pair production of $\sigma_I^+ \sigma_I^-$: $\mathcal{O}(10 \text{ fb})$ for $M_{\sigma_I} \sim 200-300 \text{ GeV}$ \rightarrow Possibility for discovery

Electroweak adjoint scalars

$$s_Y$$
 production in sfermion decay:

$$\begin{split} \tilde{t}_2 &\to \tilde{t}_1 + s_Y \\ \tilde{\tau}_2 &\to \tilde{\tau}_1 + s_Y \\ \end{split}$$
BR 1-10% possible for light s_Y , but again $\sigma_Y \to \gamma\gamma$

Summary

- Majorana gauginos are predicted in MSSM, but Dirac gauginos are possible in extended SUSY models:
 - N=2 SUSY
 - *R*-symmetric SUSY

Hall, Randall '91

The Majorana/Dirac nature in the ew. sector can be tested through

- Distributions of cascade decays at LHC
- Production processes at ILC

• Adjoint scalars predicted in N=2 SUSY

likely within reach of LHC, but neutral states have low rates and difficult signatures

Backup slides

SPS1a' scenario

