Z'_{B-L} phenomenology at LHC and ILC

Elaine Cristina Ferreira Silva Fortes – Institute of Theoretical Physics- IFT/Unesp

In Collaboration with: Vicente Pleitez (IFT), J. C. Montero (IFT), Y. do A. Coutinho (UFRJ)

Introduction

• In this work we study the phenomenology of two models with $SU(2)_L \otimes U(1)_1 \otimes U(1)_2$ gauge symmetry for the colliders LHC and ILC. We will explore reactions like:

✓ p + p →
$$\mu^+ \mu^-$$
 + X
✓ e⁺ + e⁻ → f f

 In order to perform these studies we will consider important observables for LHC as: total cross sections, number of events, forward-backward asymmetry, rapidity and transverse momentum distribution related to the final states. For ILC we will consider some asymmetry distributions.

The Models

- B-L Secluded: $SU(2)_L \otimes U(1)_Y \otimes U(1)_Z$
- B-L Flipped: $SU(2)_L \otimes U(1)_{Y'} \otimes U(1)_{B-L}$

Charge Operator			
B-L Secluded	B-L Flipped		
$Q/e=I_3+Y/2$	$Q/e=I_3+1/2[Y'+(B-L)]$		

 These models have two massive neutral vector bosons that will be denoted as Z₁ and Z₂ and their weak neutral currents will be parameterized as:

$$L^{NC} = -\frac{g}{2c_w} \sum \overline{\psi}_i \gamma_\mu \left[\left(g_V^i - g_A^i \gamma_5 \right) Z_1^\mu + \left(f_V^i - f_A^i \gamma_5 \right) Z_2^\mu \right] \psi_i$$

B-L Secluded Model

• In this model the masses of the neutral gauge bosons arise from the following terms in the covariant derivatives $z_{o} = 2$

$$g^{2} \frac{v^{2}}{8} \left(W_{3}^{\mu} - t_{W} B_{Y}^{\mu} - z_{H} t_{Z} B_{Z}^{\mu} \right)^{2} + \frac{u^{2}}{8} \left(z_{\varphi} g_{Z} B_{Z}^{\mu} \right)^{2} \qquad t_{Z} = \frac{g_{Z}}{g} \qquad t_{W} = \frac{g_{Z}}{g}$$

• In the basis W_3 , B_Y and B_Z the mass square matrix for the three electrically neutral gauge bosons is:

$$M_{neutral}^{2} = \frac{g^{2}u^{2}}{4} \begin{pmatrix} \overline{v}^{2} & -t_{W}\overline{v}^{2} & -2t_{Z}z_{H}\overline{v}^{2} \\ -t_{W}\overline{v}^{2} & t_{W}^{2}\overline{v}^{2} & 2t_{W}t_{Z}z_{H}\overline{v}^{2} \\ -2t_{Z}z_{H}\overline{v}^{2} & 2t_{W}t_{Z}z_{H}\overline{v}^{2} & 4t_{Z}^{2}(1+z_{H}^{2}\overline{v}^{2}) \end{pmatrix} \qquad g_{Z} > 0$$

B-L Flipped Model

• The masses of the neutral gauge bosons arise from the following terms in the covariant derivatives:

$$\frac{v^2}{8} \left(g W_3^{\mu} - g ' B_{Y'}^{\mu} - g_{B-L} B_{B-L}^{\mu} \right)^2 + \frac{u^2}{8} \left(g ' Y_{\phi} B_{Y'}^{\mu} - g_{B-L} Y_{\phi} B_{B-L}^{\mu} \right)^2 \qquad Y_{\phi} = -2$$

• The mass square matrix for the three electrically neutral gauge bosons in the basis $W_3, B_{Y'}, B_{B-L}$ is:

$$M_{neutral}^{2} = g^{2}u^{2} \begin{pmatrix} \overline{v}^{2}/4 & t'\overline{v}^{2}/4 & 0 \\ t'\overline{v}^{2}/4 & t'^{2}(1+\overline{v}^{2}/4) & -t't_{B-L} \\ 0 & -t't_{B-L} & t_{B-L}^{2} \end{pmatrix} \qquad t' = \frac{g}{g}$$

$$t_{B-L} = \frac{g_{B-L}}{g}$$

Imputs Chosen for Both Models

2 scenarios: First: M_Z[,]=1000 GeV; Second M_Z[,]=1500 GeV

B-L Flipped

- g'= 0.44
- g_{B-L}=0.6132
- u =1324.4 / 1987
- Γ_{Z'}= 26.37 GeV/ 38.87 GeV

B-L Secluded

- g_z=0.2
- z_q= 1/3
- u = 5000 / 7500

•
$$z_H = 0 \longrightarrow f_A$$
's vanish

 The vectorial couplings of Z' to fermions will be given by:

 $f_V^{\nu} = f_V^{l} = -3f_V^{u} = -3f_V^{d} = t_Z c_W$

• Γ_{Z'}= 9.55 GeV/ 10.48 GeV

Neutral Coupling Constants f_{V,A} and Decay Widths for Both Models

M _{z'} =1000 /1500 GeV	B-L Flipped		B-L Secluded	
	$f_{ m V}$	$f_{ m A}$	$f_{ m V}$	$f_{ m A}$
neutrinos	0.8412 / 0.8420	-0.1739 / -0.1732	0.2690 / 0.2690	0 / 0
leptons	0.4977 / 0.4977	0.1739 / -0.1732	0.2690 / 0.2690	0 / 0
u-quarks	-0.0510 / -0.0511	-0.1739 / -0.1732	-0.0897 / -0.0897	0 / 0
d-quarks	-0.3949/-0.3955	0.1739 / -0.1732	-0.0897 / -0.0897	0 / 0

M _{z'} =1000 /1500 GeV	B-L Flipped	B-L Secluded
$Z' \rightarrow \sum_i \overline{v_i} v_i$	36% / 36%	23.5% / 23.6%
$Z' \rightarrow \sum_i \overline{l_i} l_i$	18.6% / 18.6%	45.1% / 45.5%
$Z' \rightarrow \sum_i \overline{q}_i q_i$	42.4% / 42.6%	31.4% / 30.9%
$Z' \rightarrow W^+ W^-$	3% / 2.8%	0%/ 0%

Observables of Z' at Colliders

<u>LHC</u>

- ✓ Total cross sections;
- Forward-backward Asymmetry;
- Rapidity Distributions;
- ✓ Transverse moment Distributions;
- ✓ Lepton angular Distribution.

ILC

- Forward-backward Asymmetry;
- ✓ Left-right Asymmetry;
- Polarization Asymmetry;
- ✓ Mixed Asymmetries.

Drell-Yan Channel: $p + p \rightarrow \mu^+ + \mu^- + X$

Results - LHC

Results - LHC

Results - ILC (M_{Z2}=1000 GeV)

Conclusions

- The B-L Secluded Model is leptofilic, its cross section near the Z₂₋peak, is larger for leptons if compared to quarks;
- In both models, Z₂ decays preferentially to leptons compared to the SM;
- The Z₂ widths are very different in each model and are larger in the flipped model;
- According to the chosen parameters, the Flipped model has better chances to be disentangled from the background of the standard model, due to the nature of Z_2 couplings to fermions;

References

- J. C. Montero and V. Pleitez, Phys. Lett. B765, 64 (2009); arXiv:0706.0473;
- T. Appelquist, B. A. Dobrescu, and A. R. Hopper, Phys. Rev. D 68, 035012 (2003);
- L. Basso, A. Belyaev, S. Moretti, and G. M. Pruna, Phys. Rev. D 80, 055030 (2009); and JHEP 10, 006 (2009);
- M. Carena, A. Daleo, B. A. Dobrescu, and T.M.P. Tait, Phys. Rev. D 70, 093009 (2004);
- G. Cacciapaglia, C. Csaki, G. Mrandella, and A. Strumia, Phys. Rev. D 74, 033011 (2006);
- J. Erler, P. Langacker, S. Munir, and E. Rojas, JHEP 08, 017 (2009); arXiv:0906.2435;
- M. Dittmar, Anne-Sylvie Nicollerat, A. Djouadi, Phys. Lett. B 583, 111 (2004).
- LEP and SLD Collaborations, Phys. Rept. 467, 257 (2006).