Z_{B-L}^{\prime} phenomenology at LHC and

 ILCElaine Cristina Ferreira Silva Fortes - Institute of Theoretical Physics- IFT/Unesp

In Collaboration with: Vicente Pleitez (IFT),
J. C. Montero (IFT), Y. do A. Coutinho (UFRJ)

Introduction

- In this work we study the phenomenology of two models with $S U(2)_{L} \otimes U(1)_{1} \otimes U(1)_{2}$ gauge symmetry for the colliders LHC and ILC. We will explore reactions like:
$\checkmark p+p \rightarrow \mu^{+} \mu^{-}+X$
$\checkmark \mathrm{e}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{f} \overline{\mathrm{f}}$
- In order to perform these studies we will consider important observables for LHC as: total cross sections, number of events, forward-backward asymmetry, rapidity and transverse momentum distribution related to the final states. For ILC we will consider some asymmetry distributions.

The Models

- B-L Secluded: $\operatorname{SU}(2)_{L} \otimes U(1)_{Y} \otimes U(1)_{Z}$
- B-L Flipped: $S U(2)_{L} \otimes U(1)_{Y} \otimes U(1)_{B-L}$

Charge Operator

$$
\begin{array}{c|c}
\text { B-L Secluded } & \text { B-L Flipped } \\
\hline \mathrm{Q} / \mathrm{e}=\mathrm{I}_{3}+\mathrm{Y} / 2 & \mathrm{Q} / \mathrm{e}=\mathrm{I}_{3}+1 / 2\left[\mathrm{Y}^{\prime}+(\mathrm{B}-\mathrm{L})\right]
\end{array}
$$

- These models have two massive neutral vector bosons that will be denoted as Z_{1} and Z_{2} and their weak neutral currents will be parameterized as:

$$
L^{N C}=-\frac{g}{2 c_{w}} \sum \bar{\psi}_{i} \gamma_{\mu}\left[\left(g_{V}^{i}-g_{A}^{i} \gamma_{5}\right) Z_{1}^{\mu}+\left(f_{V}^{i}-f_{A}^{i} \gamma_{5}\right) Z_{2}^{\mu}\right] \psi_{i}
$$

B-L Secluded Model

- In this model the masses of the neutral gauge bosons arise from the following terms in the covariant derivatives $\quad z_{\varphi}=2$

$$
g^{2} \frac{v^{2}}{8}\left(W_{3}^{\mu}-t_{W} B_{Y}^{\mu}-z_{H} t_{Z} B_{Z}^{\mu}\right)^{2}+\frac{u^{2}}{8}\left(z_{\varphi} g_{Z} B_{Z}^{\mu}\right)^{2} \quad t_{Z}=\frac{g_{Z}}{g} \quad t_{W}=\frac{g_{Y}}{g}
$$

- In the basis W_{3}, B_{Y} and B_{Z} the mass square matrix for the three electrically neutral gauge bosons is:

$$
M_{\text {neutral }}^{2}=\frac{g^{2} u^{2}}{4}\left(\begin{array}{ccc}
\bar{v}^{2} & -t_{W} \bar{v}^{2} & -2 t_{Z} z_{H} \bar{v}^{2} \\
-t_{W} \bar{v}^{2} & t_{W}^{2} \bar{v}^{2} & 2 t_{W} t_{Z} z_{H} \bar{v}^{2} \\
-2 t_{Z} z_{H} \bar{v}^{2} & 2 t_{W} t_{Z} z_{H} \bar{v}^{2} & 4 t_{Z}^{2}\left(1+z_{H}^{2} \bar{v}^{2}\right)
\end{array}\right) \quad g_{Z}>0
$$

B-L Flipped Model

- The masses of the neutral gauge bosons arise from the following terms in the covariant derivatives:

$$
\frac{v^{2}}{8}\left(g W_{3}^{\mu}-g^{\prime} B_{Y^{\prime}}^{\mu}-g_{B-L} B_{B-L}^{\mu}\right)^{2}+\frac{u^{2}}{8}\left(g^{\prime} Y_{\phi}^{\prime} B_{Y^{\prime}}^{\mu}-g_{B-L} Y_{\phi}^{\prime} B_{B-L}^{\mu}\right)^{2} \quad Y_{\phi}^{\prime}=-2
$$

- The mass square matrix for the three electrically neutral gauge bosons in the basis $W_{3}, B_{Y^{\prime}}, B_{\mathrm{B}-\mathrm{L}}$ is:

$$
M_{\text {neutral }}^{2}=g^{2} u^{2}\left(\begin{array}{ccc}
\bar{v}^{2} / 4 & t^{\prime} \bar{v}^{2} / 4 & 0 \\
t^{\prime} \bar{v}^{2} / 4 & t^{\prime 2}\left(1+\bar{v}^{2} / 4\right) & -t^{\prime} t_{B-L} \\
0 & -t^{\prime} t_{B-L} & t_{B-L}^{2}
\end{array}\right)
$$

$$
\begin{gathered}
t^{\prime}=\frac{g^{\prime}}{g} \\
t_{B-L}=\frac{g_{B-L}}{g}
\end{gathered}
$$

Imputs Chosen for Both Models

2 scenarios: First: $M_{Z}=1000 \mathrm{GeV}$; Second $M_{Z},=1500 \mathrm{GeV}$

B-L Flipped

- $g^{\prime}=0.44$
- $g_{\mathrm{B}-\mathrm{L}}=0.6132$
- $u=1324.4$ / 1987
- $\Gamma_{Z}=26.37 \mathrm{GeV} / 38.87 \mathrm{GeV}$

B-L Secluded

- $g_{z}=0.2$
- $z_{q}=1 / 3$
- $u=5000 / 7500$
- $\mathrm{Z}_{\mathrm{H}}=0 \longrightarrow f_{\mathrm{A}}$'s vanish
- The vectorial couplings of Z' to fermions will be given by:

$$
f_{V}^{v}=f_{V}^{l}=-3 f_{V}^{u}=-3 f_{V}^{d}=t_{z} c_{W}
$$

- $\Gamma_{Z}=9.55 \mathrm{GeV} / 10.48 \mathrm{GeV}$

Neutral Coupling Constants $\mathrm{f}_{\mathrm{V}, \mathrm{A}}$ and Decay Widths for Both Models

$\mathrm{M}_{\mathrm{Z}}=1000 / 1500$	B-L Flipped		B-L Secluded	
GeV	f_{V}	f_{A}	f_{V}	f_{A}
neutrinos	$0.8412 / 0.8420$	$-0.1739 /-0.1732$	$0.2690 / 0.2690$	$0 / 0$
leptons	$0.4977 / 0.4977$	$0.1739 /-0.1732$	$0.2690 / 0.2690$	$0 / 0$
u-quarks	$-0.0510 /-0.0511$	$-0.1739 /-0.1732$	$-0.0897 /-0.0897$	$0 / 0$
d-quarks	$-0.3949 /-0.3955$	$0.1739 /-0.1732$	$-0.0897 /-0.0897$	$0 / 0$

$\mathrm{M}_{\mathrm{z}}=1000 / 1500$ GeV	B-L Flipped	B-L Secluded
$Z^{\prime} \rightarrow \sum_{i} \bar{v}_{i} v_{i}$	$36 \% / 36 \%$	$23.5 \% / 23.6 \%$
$Z^{\prime} \rightarrow \sum_{i} \bar{l}_{i} l_{i}$	$18.6 \% / 18.6 \%$	$45.1 \% / 45.5 \%$
$Z^{\prime} \rightarrow \sum_{i} \bar{q}_{i} q_{i}$	$42.4 \% / 42.6 \%$	$31.4 \% / 30.9 \%$
$Z^{\prime} \rightarrow W^{+} W^{-}$	$3 \% / 2.8 \%$	$0 \% / 0 \%$

Observables of Z' at Colliders

\author{

LHC

 \checkmark Total cross sections;
 \checkmark Forward-backward Asymmetry;
 \checkmark Rapidity Distributions;
 \checkmark Transverse moment Distributions;
 \checkmark Lepton angular Distribution.}

ILC
\checkmark Forward-backward Asymmetry;
\checkmark Left-right Asymmetry;
\checkmark Polarization Asymmetry;
\checkmark Mixed Asymmetries.

Drell-Yan Channel: $\mathrm{p}+\mathrm{p} \rightarrow \mu^{+}+\mu^{-}+\mathrm{X}$

$$
\mathrm{e}^{+}+\mathrm{e}^{-} \rightarrow \mu^{+}+\mu^{-}
$$

Results - LHC

Results - LHC

Results - LHC

Results - LHC

Results - ILC ($\mathrm{M}_{\text {z2 }}=1000 \mathrm{GeV}$)

Conclusions

- The B-L Secluded Model is leptofilic, its cross section near the Z_{2}-peak, is larger for leptons if compared to quarks;
- In both models, Z_{2} decays preferentially to leptons compared to the SM;
- The Z_{2} widths are very different in each model and are larger in the flipped model;
- According to the chosen parameters, the Flipped model has better chances to be disentangled from the background of the standard model, due to the nature of Z_{2} couplings to fermions;

References

$\square J . ~ C . ~ M o n t e r o ~ a n d ~ V . ~ P l e i t e z, ~ P h y s . ~ L e t t . ~ B 765, ~ 64 ~(2009) ; ~$ arXiv:0706.0473;
\square T. Appelquist, B. A. Dobrescu, and A. R. Hopper, Phys. Rev. D 68, 035012 (2003);
LL. Basso, A. Belyaev, S. Moretti, and G. M. Pruna, Phys. Rev. D 80, 055030 (2009); and JHEP 10, 006 (2009);
\square M. Carena, A. Daleo, B. A. Dobrescu, and T.M.P. Tait, Phys. Rev. D 70, 093009 (2004);
\square G. Cacciapaglia, C. Csaki, G. Mrandella, and A. Strumia, Phys. Rev. D 74, 033011 (2006);
$\square J$. Erler, P. Langacker, S. Munir, and E. Rojas, JHEP 08, 017 (2009); arXiv:0906.2435;
\square M. Dittmar, Anne-Sylvie Nicollerat, A. Djouadi, Phys. Lett. B 583, 111 (2004).
\square LEP and SLD Collaborations, Phys. Rept. 467, 257 (2006).

