Muon g-2 and a peculiar extra U(1)

PRD 80, 033001 (2009) [hep-ph/0811.0298]

Jae Ho Heo Theoretical High Energy Group jheo1@uic.edu

University of IL at Chicago

PHENO 2010

g-2 of the muon

- Radiative corrections (loop corrections) : different magnitude of MDMs for charged leptons (electron, muon and tauon)
 Assuming QED is correct,
- Current measurements: $a_e (\exp) = 11596521.8073(0.0028) \times 10^{-10}$ Havard $a_\mu (\exp) = 11659208.0(6.33) \times 10^{-10}$ BNL E821

G.W. Benett, et al, PRD 73, 072003 (2006)

The electron *g*-2 is 350 times more precisely measured. However, it is much less sensitive to new physics, since the effect of mass is suppressed by the factor $(m_{\mu}/m_{e})^{2} \approx 43000$

Electron g-2 is a test of QED, but not for other aspects of SM

SM predictions of the muon g-2

$$a_{\mu}(\text{QED}) = 11658471.8113(162) \times 10^{-10}$$

$$a_{\mu}(\text{QED}) = \frac{\alpha}{2\pi} + 0.765857388(44) \left(\frac{\alpha}{\pi}\right)^{2} + 24.050509(2) \left(\frac{\alpha}{\pi}\right)^{3} + 126.04 \left(\frac{\alpha}{\pi}\right)^{4} + 930(170) \left(\frac{\alpha}{\pi}\right)^{5} + \cdots$$
Schwinger Sommerfield Laporta & Remiddi Kinoshita Milstein *et al*

$$a_{\mu}(\text{EW}) = 15.4(0.2) \times 10^{-10}$$

 a_{μ} (hadrons) = 693.07(6.89)×10⁻¹⁰

• The discrepancy from the SM prediction :

 $\Delta a_{\mu} \equiv a_{\mu}(\exp) - a_{\mu}(SM) = 27.7(9.3) \times 10^{-10}$

About 3.0 σ deviation from the SM prediction

We consider that this deviation comes from new physics beyond the standard model

Theoretical Frame Work

- Extend the SM with an exotic lepton triplet *E* per family
 - : $SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_X$

Barr, Dorsner, PRD 72 015011 (2005)

Anomaly cancellations ____ These constraints provide gauge charges of fermions
 : additional 6 anomaly cancellations necessary

 $U(1)_Y^2 \times U(1)_X U(1)_Y \times U(1)_X^2, U(1)_X^3, SU(2)^2 \times U(1)_X, SU(3)^2 \times U(1)_X$, gravity $\times U(1)_X$

- Gauge invariance with an extra U(1) : renomalizable Lagrangians
- **Symmetry breakings :** 2 steps symmetry breaking

$$SU(2)_{L} \times U(1)_{Y} \times U(1)_{X} \xrightarrow{\langle \eta \rangle} SU(2)_{L} \times U(1)_{Y} \xrightarrow{\langle \phi \rangle} U(1)_{em}$$

An additional singlet necessary.
Assumed the symmetry breaking near the weak scale

Usual EW symmetry breaking

Fermion gauge charges

TABLE II: Fermion gauge charges. T_3 is the weak isospin, Y is the hypercharge, X is the extra $U(1)_X$ charge, and $Q = T_3 + Y$ is the electric charge. The charges for the right handed fermions can also be assigned in the identical way. $(f_L^c \equiv (f_L)^c$ in this letter, so $(f^c)_L$ implies the antiparticle of f_R).

		u_L	d	L (u	c) _L	$\left(d^{c} ight)_{L}$		ν_L	ℓ_L	$(\ell^c)_L$		E_L^+	1	E_L^0	E_L^-	
2	T_3	$\frac{1}{2}$	_	$\frac{1}{2}$	0	0		$\frac{1}{2}$.	$-\frac{1}{2}$	0		1		0	-1	
1	Y	$\frac{1}{6}$	$\frac{1}{\epsilon}$	<u>l</u> –	23	$\frac{1}{3}$		$-\frac{1}{2}$.	$-\frac{1}{2}$	1		0		0	0	
	X	1	1 -		-1	-1	1		1	1		-1		-1	-1	
Г				U		u^c		d ^c		L		ec		Ε		_
U($(1)_{Y}^{2}$	$\times U(1)_X$:	$3\left[2\left(\frac{1}{6}\right)^2\right]$	+	$-\left(-\frac{2}{3} ight)^2$	+	$-\left(\frac{1}{3}\right)^2]$	+	$2\left(-\frac{1}{2}\right)^2$	+	$(1)^{2}$	+	0	=	0
U($1)_Y$	$\times U(1)_X^2$:	$3[2\left(\frac{1}{6}\right)$	+	$(-\frac{2}{3})$	+	$\frac{1}{3}$]	+	$2\left(-\frac{1}{2}\right)$	+	1	+	0	=	0
SU	$(3)^2$	$\times U(1)_X$:	2	+	-1	+	-1	+	0	+	0	+	0	=	0
	U($1)_X^3$:	$3[2(1)^{3}$	+	$(-1)^{3}$	+	$(-1)^{3}]$	+	$2(1)^{3}$	+	13	+	$3(-1)^3$	=	0
$SU(2)^2 \times U(1)_X$ and gravity $\times U(1)_X$ lae Ho Heo														5		

јае по пео

Yukawa potential

 E, χ : bidoublet representation

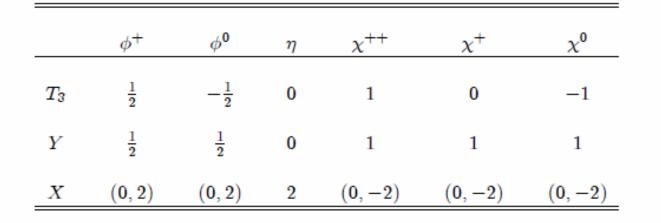
$$E_{L} = \begin{pmatrix} \frac{1}{\sqrt{2}} E^{0} & E^{+} \\ E^{-} & -\frac{1}{\sqrt{2}} E^{0} \end{pmatrix}_{L}, \quad \chi = \begin{pmatrix} \frac{1}{\sqrt{2}} \chi^{+} & \chi^{++} \\ \chi^{0} & -\frac{1}{\sqrt{2}} \chi^{+} \end{pmatrix}$$

• Leptons :

A Majorana combination

 $y_1 \operatorname{Tr}(\overline{E_L^c}E_L)\eta + y_2 \overline{L_L}\phi \ell_R + y_3 \overline{L_L^c}i\sigma_2 \chi L_L + y_4 \overline{L_L^c}i\sigma_2 E_L\phi + y_5 \operatorname{Tr}(\overline{E_L}\chi)\ell_R + h.c.$

Gauge charges of the Higgses by combinations with leptons


$$y_1 \mathrm{Tr} \left(\overline{E_L^c} E_L \right) \eta_{(2)} + y_2 \overline{L_L} \phi_{(2)} \ell_R + y_3 \overline{L_L^c} i \sigma_2 \chi_{(-2)} L_L$$

 $+ y_4 \overline{L_L^c} i \sigma_2 E_L \phi_{(0)} + y_5 \operatorname{Tr} \left(\overline{E_L} \chi_{(0)} \right) \ell_R + h.c.$

- Higgs doublet and triplet can have two distinct extra U(1) charges
- \succ Z₂ symmetry: E is odd and all other particles are even \Rightarrow E⁰ is a dark matter candidate

Higgs gauge charges

TABLE III: Higgs gauge charges. T_3 is the weak isospin, Y is the hypercharge, X is the $U(1)_X$ charge, and $Q = T_3 + Y$ is the electric charge.

- Quarks $y_6 \overline{Q_L} \phi_{(0)} u_R + y_7 \overline{Q_L} \phi_{(0)} d_R + h.c.$
 - : only couples to a Higgs, respect MFV(minimal flavor violation)
 - Leptons and quarks interact with two distinctive Higgs doublets
 -> different from the standard 2HDM

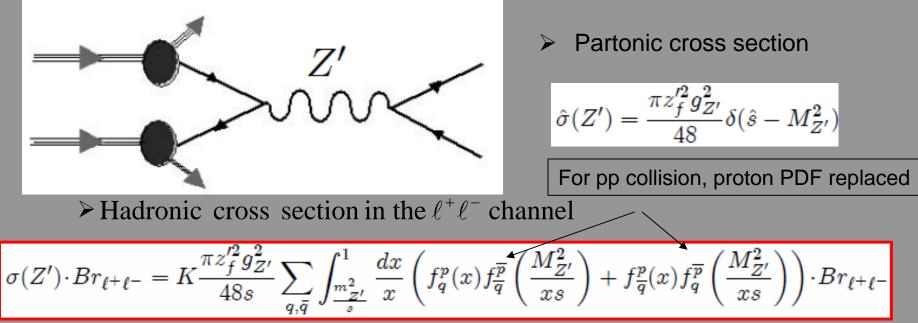
Neutrino mass generation

Mass matrix of neutral leptons

- > The coupling y_4 must be very small since $\langle \phi_{(0)} \rangle$ is of the order of 100 GeV
- Under Z₂ symmetry, there is no y₄ coupling.
 y₃ and/or <χ₍₋₂₎> are sized for the neutrino mass
 This VEV has to very small to avoid large radiative corrections to the ρ parameter
- > We predict Majorana-type massive neutrinos.

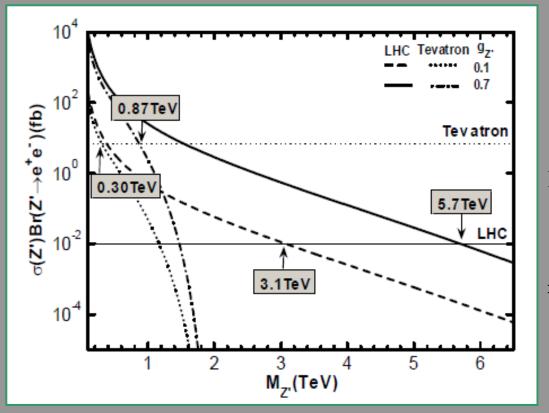
Higgs potential

• Higgs potential with the gauge invariance with the extra U(1)


$$V \supset V_{2HDM} + \left\{ \mu_1 \phi_{(0)}^T \chi_{(0)}^{\dagger} \phi_{(0)} + \mu_2 \phi_{(2)}^{\dagger} \chi_{(-2)}^{\dagger} \phi_{(0)} + h.c. \right\} \\ + \left\{ \lambda_1 \phi_{(2)}^{\dagger} \phi_{(0)} \operatorname{Tr} \left(\chi_{(-2)}^{\dagger} \chi_{(0)} \right) + \lambda_2 \phi_{(2)}^{\dagger} \sigma^a \phi_{(0)} \operatorname{Tr} \left(\chi_{(-2)}^{\dagger} \sigma^a \chi_{(0)} \right) + h.c. \right\}$$

- V_{2HDM}: only Higgs doublets involved functional form is the same as the 2HDM with Z₂ symmetry
- Two complex trilinear couplings
 :neutrino masses and Baryogensis via Leptogenesis
 Ma, Sarkar, PRL 80 5716 (1998)
- Two complex quartic couplings
 - : often mentioned for EDM of fermions

Heo,Keung, PLB 661 259 (2008)

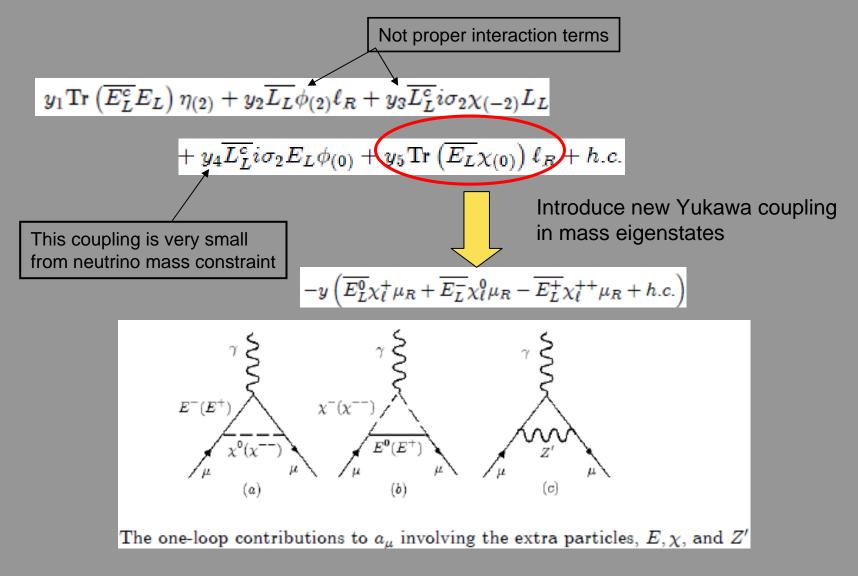

Z' searches at the Hadron Colliders

The decay into charged leptons : pp
 (p) → Z'→ ℓ⁺ℓ⁻
 explore new regions in mass and couplings at Hadron colliders

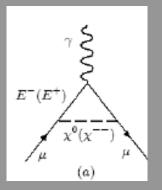
- K is QCD correction factor (~1.3) : ratio of higher order over leading order M. Carena, et al, PRD 70 093009 (2004)
- Branching ratio : depend how many decay channels are open. Two more channels are possible in this model, but still within 4~5%, though the channels are open or not

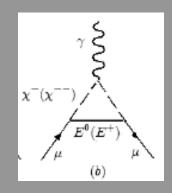
Z' discovery limit at the Tevatron and LHC

The predictions : MRST LO PDFs are used MRST, PLB 531 216 (2002)


Intersections of the curves :lower mass limits of $M_{Z'}$

⇒ The lower limits of the extra U(1) symmetry breaking: 200 ~ 800 GeV

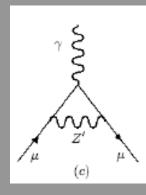

The horizontal lines:


Tevatron (
$$\sqrt{s} = 1.96$$
 TeV and $L = 1.3$ fb⁻¹)
LHC($\sqrt{s} = 14$ TeV and $L = 100$ fb⁻¹)

g-2 MDM generation Lagrangian at one loop

MDM generation at one loop

Negligible contribution, since the particles (E^+, E^-) on the line which are hooked up by the photon have opposite charges.

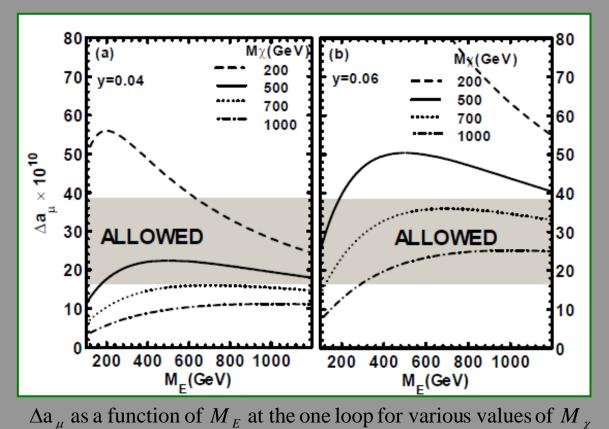

•
$$\Delta a_{\mu} = \frac{3y^2}{8\pi^2} \left(\frac{m_{\mu}}{M_E}\right) f\left(\frac{M_{\chi}^2}{M_E^2}\right)$$

Corresponding one loop function

Asymptotic behavior

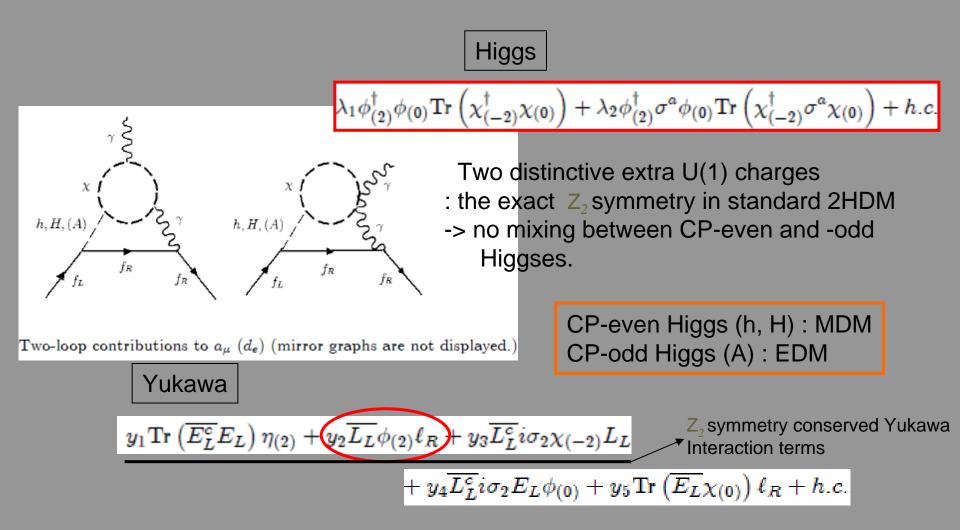
$$f(z) = \int_0^1 dx \frac{(1-x)x}{zx+1-x} = \frac{1-z^2+2z\ln z}{2(1-z)^3}$$

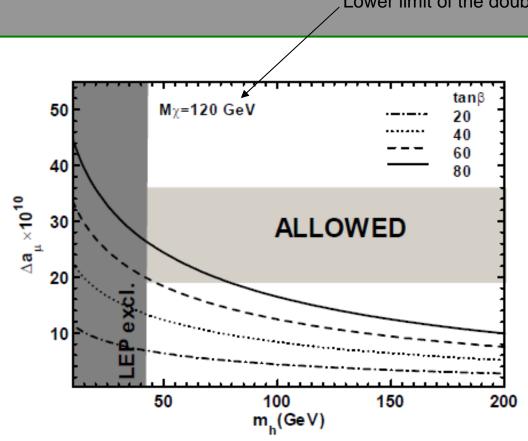
S:
$$\int_0^1 dx \frac{1}{e^2} \quad \text{as } z = 1$$
$$\longrightarrow \begin{cases} \frac{1}{e^2} \quad \text{as } z = 1\\ \frac{1}{2z} - \frac{\ln z}{z^2} \quad \text{for } z \gg 1\\ \frac{1}{2} + z\ln z \quad \text{for } z \ll 1 \end{cases}$$


r1

• $\Delta a_{\mu} \cong \frac{g_{z'}^2}{12\pi^2} \frac{m_{\mu}^2}{M_{z'}^2} < 10^{-10}$, negligible Jae Ho Heo

$$\Delta a_{\mu}^{(one)} = \frac{3y^2}{8\pi^2} \left(\frac{m_{\mu}}{M_E}\right) f\left(\frac{M_{\chi}^2}{M_E^2}\right)$$


• Very sensitive to the Yukawa coupling y


• Predictions in the allowed band around y=0.05for $0.1 \text{TeV} < M_E, M_{\gamma} < 1 \text{TeV}.$

• y > 0.06 region is possible for $M_E, M_{\chi} > 1$ TeV.

MDM generation at two loop

$$\Delta a_{\mu}^{(\text{two})} \simeq -\sum_{\mathcal{H},\chi} \frac{\alpha m_{\mu}^2}{16\pi^3} \frac{Q_{\chi}^2 r_{\mathcal{H}} \lambda_+}{m_{\mathcal{H}}^2} \left[F\left(\frac{M_{\chi_{\ell}}^2}{m_{\mathcal{H}}^2}\right) + F\left(\frac{M_{\chi_{h}}^2}{m_{\mathcal{H}}^2}\right) \right]$$

Lower limit of the doubly charged scalar from the Tevatron and the LEP

CDF Col., PRL 95 071801 (2005) L3 Col., PLB 576 18 (2003)

- $Q_{\chi}^2 = 5$ due to singly and doubly charged scalars in the inner loop
 - The Yukawa coupling λ₊ : the same size as the SM Higgs quartic couling for the SM Higgs of 120 GeV
 - Predictions barely reside in the allowed band, but still possible parameter space

 Δa_{μ} as a function of m_h at the two loop for various values of $\tan \beta$ Jae Ho Heo

Conclusion

- A model (Lagrangian) with a peculiar extra U(1) was built.
 - An extra U(1) with an exotic lepton triplet per family in anomaly free gauge

The sizable g-2 MDM could be generated.

g-2 MDM at one and two loops, but the allowed parameter space is very narrow for two loop