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Introduction

We focus on aspects of the Monte Carlo (MC) simulations which affect jet
energy

— Jetp;

— Top mass

— Missing-E;

— Background Estimates
— Di-jet invariant mass

Accurate description of multi-jet final states is important for the discovery
potential of the LHC experiments.

Identify and measure theoretical uncertainties contributing to the jet
energy measurements

— Renormalization and factorization scales

— Choice of PDFs

— Initial and final state radiation (FSR and ISR)
— Leading—log parton shower (PS)

Indicate which elements of the MC simulations (PYTHIA) have to be
improved to get more accurate predictions
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Definition of a jet and JES

4-momenta of the calorimeter towers
are grouped into “calorimeter jets”
using jet clustering algorithm (JETCLU,
cone = 0.4, 0.7,1.0).

Energy (momentum) of a calorimeter jet
is normalized to that of a particle or
parton jet (called JES)

Corrections account for
— Instrumental effects

— Physics effects
— Jet clustering algorithm

Uncertainties are included in JES
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Analysis technique

* P;-balance in events with a Z-boson and a Jet
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Event Selection

CDF Run Il Preliminary
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SM Predictions (MC generators)

ALPGEN+PYTHIA (Matrix Elements & Parton
Shower calculations)

Exact ME for Z+0p + a correction to Initial Exact ME’s for up to 4 partons
State Radiation
No need for jet-parton matching Jet-parton matchingis @ 15 GeV for cone-

0.4 jets to avoid double-counting

Same UE, Same PDF (CTEQ5L), same showering
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Observed P--balance

Jets in Pythia samples have 4.7% more energy than in data for P(2)

> 25 GeV

Measured energy is sensitive to the fraction of quark and gluon jets.
Is the mix of quark and gluon jet properly modeled?
Do PDF’s and tree-level diagrams give the right fraction?
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Validation: rapidity distributions

* The rapidity distributions are sensitive to PDF’s and
contributions from qg—>Zq and qgbar—>Zg diagrams

e Pythia and Alpgen describe data well
* ME and PDFs are correct in Pythia
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* Average num. of tracks in a jet
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In-cone radiation is well modeled; quark-gluon fraction is correct

Validation: # of tracks

Number of tracks observed within the jet cone

Pythia describes in-cone hadronization and fragmentation
accurately

Many other studies of shower properties
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Summary of Uncertainties

e \We have went the uncertainties on the SM MC simulations

 The uncertainty due to large-angle parton radiation (FSR) is the

largest on the theoretical predictions CDF Run Il Preliminary

Source of uncertainty jet cone = 0.4 | jet cone = 0.7 | jet cone = 1.0
renormalization and factorization scales +0.9 -0.0 +0.9-04 +0.4
FSR parameters in PYTHIA +0.4 +0.1 +0.1
ME’s and parton-jet matching +1.1 -0.0 +0.8 -0.0
single particle response +2.5 +2.5
multiple proton interactions +1.2 -0.0 +1.2 -0.0
large-angle FSR, limitation of PS +0.0 -0.2 +1.7 -0.0
Estimate of the total variation +3.1-2.5 +3.4-25
The observed discrepancy +3.2 +2.0

The table presents variation of the MC prediction of <P (jet)/P(Z)> in %
(percent) and the difference between data and PYTHIA predictions (The
observed discrepancy).
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Uncertainty on the out-of-cone
radiation

¢ Study out-of cone radiation with correlations between P;-balance and
properties of the 2" jet.

e Data indicates that PYTHIA underestimated the amount of out-of-cone
radiation (large-angle FSR)

* Discrepancy becomes smaller with larger jet cone sizes.
* OQverall, impressive agreement between the LO simulation and data
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Conclusions

We have investigated the systematic uncertainties
affecting the measurements of jet energies

Overall, PYTHIA describes data very well

Parton radiation at large angles is the largest source of
uncertainty on the predictions

A new generation of SM simulations (and new tunes)
promise more accurate predictions:

— MC@NLO

— Powheg

— New parton showers and their tunes in Pythia and Herwig
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Single Particle response

* G-Flash shower parameterization was tuned with single beam and
minimum bias data
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