Searching for Colorons at the LHC

J. Sayre

Homer L. Dodge Department of Physics University of Oklahoma

Based on work with C. Kao

Colorons?

coloron[kuhl-er-ahn] n. Generically, a massive color-octet spin-1 boson. May arise in, e.g.,

- Topcolor models.[C.T. Hill, 1991]
- Kaluza-Klein gluons in extra-dimensional models.
- Non-minimal Technicolor.[Farhi and Sussking, 1979]
- String excitations of gluons in TeV Gravity.[Cullen, Perelstein and Peskin, 2000]

Minimally, colorons may arise as a result of new strong dynamics. We treat as an object of generally interest, like a Z'. We follow the analysis of Kilic, Okui, Sundrum(2008) and Kilic, Schumann and Son(2008).

Basic Analysis

We imagine that there exists a new strong force, hypercolor, which becomes confining at a relatively high scale. Colorons emerge as bound states of hypercolor-charged hyper-quarks that also carry $SU(3)_C$ charge. Under $SU(N)_{HC} \times SU(3)_C \times SU(2) \times U(1)$:

$$\Psi(N,3,1,0)\Psi(\overline{N},\overline{3},1,0) \to \Phi(1,8,1,0)$$

More generally, we might have non-trivial electroweak charges. For now consider the neutral case to avoid electroweak constraints. Naively, this case is strongly constrained by dijet resonances.

$$q\overline{q}(gg) \to \Phi \to q\overline{q}$$

However, this need not be the case.

Analogy to SM Mesons

Our toy model is closely analogous to the SM mesons.

 $e^+e^- \to \gamma \to \rho \to \pi\pi$

 ρ , our coloron analogue, decays primarily to $\pi\pi$, not to e^+e^- . In SM:

 $SU(3)_C$ condensate breaks chiral $SU(3)_L \times SU(3)_R \times U(1)_L \times U(1)_R$ to flavor $SU(3)_F \times U(1)$.

We expect 9 Goldstone bosons in flavor (1+8).

However, $SU(3)_F$ singlet (η') has non-vanishing anomaly with 2 gluons so not an exact broken symmetry.

Moreover, electroweak breaking gives non-zero quark masses/ non-exact flavor symmetries.

- Light but not massless π 's.
- Substantially heavier K's and η 's due to strange quark mass.

We also see a heavier spin-1 flavor octet: ρ 's,etc.

Hypercolor Comparison

SM	Hypercolor	
$SU(3)_C$	$SU(N)_{HC}$	
$SU(3)_L \times SU(3)_R$	$SU(3)_C \times SU(3)_{L+R}$	
q	${ ilde q}$	
π,η,K	$ ilde{\pi}$	
$ ho, \omega, K^*, \phi$	$\widetilde{ ho}$	
e^- , γ	q, g	

Note, $SU(3)_C$ is gauged and exact, unlike flavor. Therefore $\tilde{\rho}$ and $\tilde{\pi}$ are color octets of equal mass.

Color singlet will have an anomaly giving it a higher mass.

 $\tilde{\rho}$ s (colorons) and $\tilde{\pi}$ s are lightest new states which may be accessible to searches.

Lagrangians

$$\begin{aligned} \mathscr{L}_{QED} &= \overline{e}i \, D e - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{4} \rho_{\mu\nu} \rho^{\mu\nu} + \frac{m_{\rho}^2}{2} \rho_{\mu} \rho^{\mu} + \frac{\varepsilon}{2} \rho_{\mu\nu} F^{\mu\nu} \\ &+ \frac{1}{2} \partial_{\mu} \pi^0 \partial^{\mu} \pi^0 - m_{\pi^0}^2 \pi^0 \pi^0 + D_{\mu} \pi^- D^{\mu} \pi^+ - m_{\pi^{\pm}}^2 \pi^- \pi^+ \\ &- i * g_{\rho\pi\pi} \rho^{\mu} (\pi^- D_{\mu} \pi^+) - \frac{e^2 \epsilon^{\mu\nu\rho\sigma}}{32\pi^2 f_{\pi}} \pi^0 F_{\mu\nu} F_{\rho\sigma}. \end{aligned}$$

Effective constants f_{π} , ϵ , and $g_{\rho\pi\pi}$ determined from experiment. Compare:

$$\begin{aligned} \mathscr{L}_{QCD} &= \overline{q} i \, D q - \frac{1}{4} G^a_{\mu\nu} G^{a\mu\nu} - \frac{1}{4} \tilde{\rho}^a_{\mu\nu} \tilde{\rho}^{a\mu\nu} + \frac{m_{\tilde{\rho}^2}}{2} \tilde{\rho}^a_\mu \tilde{\rho}^{a\mu} + \frac{\varepsilon}{2} \tilde{\rho}^a_{\mu\nu} G^{a\mu\nu} \\ &+ \frac{1}{2} (D_\mu \tilde{\pi})^a (D^\mu \tilde{\pi})^a - m_{\tilde{\pi}}^2 \tilde{\pi}^a \tilde{\pi}^a \\ &- i * \tilde{g}_{\rho\pi\pi} f^{abc} \tilde{\rho}^{a\mu} (\tilde{\pi}^b D_\mu \tilde{\pi}^c) - \frac{3g_3^2 \epsilon^{\mu\nu\rho\sigma}}{16\pi^2 f_{\tilde{\pi}}} tr[\tilde{\pi} G_{\mu\nu} G_{\rho\sigma}]. \end{aligned}$$

Working Model

We rotate fields to eliminate $\tilde{\rho} - g$ mixing and add two terms without direct analogues.

$$\begin{aligned} \mathscr{L}_{QCD}' &= \overline{q} i \, D q - \frac{1}{4} G^a_{\mu\nu} G^{a\mu\nu} - \frac{1}{4} \tilde{\rho}^a_{\mu\nu} \tilde{\rho}^{a\mu\nu} + \frac{m_{\tilde{\rho}^2}}{2} \tilde{\rho}^a_{\mu} \tilde{\rho}^{a\mu} - g_3 * \varepsilon \tilde{\rho}^a_{\mu} \overline{q} \gamma^{\mu} T^a q \\ &+ \frac{1}{2} (D_{\mu} \tilde{\pi})^a (D^{\mu} \tilde{\pi})^a - m_{\tilde{\pi}}^2 \tilde{\pi}^a \tilde{\pi}^a - i * \tilde{g}_{\rho\pi\pi} f^{abc} \tilde{\rho}^{a\mu} (\tilde{\pi}^b D_{\mu} \tilde{\pi}^c) \\ &- \frac{3g_3^2 \epsilon^{\mu\nu\rho\sigma}}{16\pi^2 f_{\tilde{\pi}}} tr[\tilde{\pi} G_{\mu\nu} G_{\rho\sigma}] + i \chi g_3 tr[G_{\mu\nu} [\tilde{\rho}^{\mu}, \tilde{\rho}^{\nu}]] + \xi \frac{2i\alpha_3 \sqrt{N}}{m_{\tilde{\rho}}^2} tr[\rho^{\mu}_{\nu} [G^{\nu}_{\sigma}, G^{\sigma_{\mu}}]]. \end{aligned}$$

For simplicity we choose N = 3. Then effective model parameters can be determined by comparison with QED model.

- $\ \, {\it ${\cal $}$} \ \, \varepsilon \simeq 0.2$
- $\, \bullet \, \tilde{g}_{\rho\pi\pi} \simeq 6$
- $m_{\tilde{\pi}} \simeq 0.3 m_{\tilde{\rho}}$

 $m_{\tilde{
ho}}$ is the only free parameter.

Search Strategy

Model is bounded by dijet constraints from Tevatron data:

$$q\overline{q} \to \widetilde{\rho} \to q\overline{q} \quad gg \to \widetilde{\pi} \to gg$$

However, low branching fraction for $\tilde{\rho} \to q\overline{q}$ and small coupling for $\tilde{\pi} \to gg$ avoid bounds.

Leading signal is instead $pp \rightarrow \tilde{\rho} \rightarrow \tilde{\pi}\tilde{\pi} \rightarrow 4g$.

At the LHC

 $\tilde{\pi}$ resonances can be easily constructed. However, as gluons become important the s-channel $\tilde{\rho}$ is obscured.

Eight-Gluon Channel

To discover primary coloron resonances, we may need to go to pair production:

Obviously this gets complicated!

Implementation

To calculate signal matrix elements, we implement the model in MadGraph/MadEvent.[Alwall, Demin, Visscher, Frederix, Herquet, Maltoni, Plehn, Rainwater and Stelzer; 2007] *This is non-trivial!*(It turns out.) Must modify MG/ME to include:

- Non-SM like vertices and color structures, e.g.: $\tilde{\pi}gg \propto tr[T^a\{T^b, T^c\}]\epsilon^{\mu\nu\rho\sigma}p_{2\rho}p_{1\sigma}.$
- Segluon signal requires several tricks to handle large color and symmetry factors.

Parton-level results are fed to Pythia 6.4 and PGS 4 before final analysis.

8-jet background cannot be done with MadGraph. Use COMIX ME generator in Sherpa platform. [Gleisberg, Höche, Krauss, Schälicke, Schumann and Winter; 2004]

-Color-flow dressed Berends-Giele recursive relations are efficient for large multiplicities.

Analysis

We take Four-jet case:

- **•** For 4 leading jets, $p_T > 150$ GeV.
- 𝒴 η < 2.0.
- At least one pair of dijet invariant masses within 50 GeV of each other.

Eight-jet case:

- Background not passed through Pythia-PGS.
- \checkmark Large uncertainties \rightarrow require no detailed kinetic information.
- p_T 's for ordered jets: > 320; 250; 200; 160; 125; 90; 60; 40 GeV.

Results

Preliminary

Channel	Signal(pb)	Background(pb)	Significance(1 fb $^{-1}$)
4-jet	2.0	41	9.8
8-jet	~ 0.4	~ 1	~ 10

- Comparable to Hopkins results.
- We currently find slightly lower signal and higher backgrounds in 4-jet case.
- Our calculation for the 8-jet signal is significantly lower.

Future Work and Conclusions

- Colorons can be viewed as a general object of interest in BSM physics.
- A simple model based on analogy with low-energy mesons shows interesting phenomenology.
- Present bounds allow for relatively light exotic particles which may be discoverable at Tevatron or LHC.

To Do:

- Analysis of 8-jet signal can extract $\tilde{\rho}$ resonance.
- Study effects of different cuts/scales.
- Compare results for generalized models.
- Consider other discovery channels.