Double quarkonium production at the LHC

Chaehyun Yu (KIAS)

In collaboration with P. Ko (KIAS), Jungil Lee (Korea Univ.)

Based on arXiv:1005.xxxx

PHENO 10, May 10, 2010

Outline

- Motivation
- Heavy quarkonium production (NRQCD)
- Double quarkonium production at the LHC
- Conclusions

Motivation

- heavy quarkonium : a bound state of a heavy-quark-antiquark pair.
- almost nonrelativistic has a hydrogenlike spectrum.

	S-w	ave	P-wave
$^{2S+1}L_{J}$	¹ S ₀	³ S ₁	${}^{1}P_{1} {}^{3}P_{J,(J=0,1,2)}$
charmonium	η_{c}	J/ψ	$h_c \chi_{cJ}$
bottomonium	η_{b}	Y	$h_b \chi_{bJ}$
c + anti-b	B _c	B_{c}^*	

- probes perturbative and nonperturbative aspects of QCD.
- NRQCD has achieved great success in decay and production of a quarkonium and double quarkonium production at B factories, etc.
- but there are still unresolved puzzles polarization of J/ψ at Tevatron...
- natural to probe the double quarkonium production at hadron colliders.

NRQCD matrix elements

- the probability to find a corresponding Fock state in the final state.
- nonperturbative, but calculable in lattice simulations in principle.
 - suffers large uncertainties.
- universal (process independent).

- holds up to corrections of v⁴ under the vacuum saturation approximation.

- color-singlet MEs are determined from electromagnetic decays.
- How determine color-octet matrix elements?
 - color-octet dominant process.
 - J/ψ production at the Tevatron, etc.

Double quarkonium production

• can not explain the data for the single quarkonium production rate and its polarization only with the color-singlet contributions.

- the predictions for the polarization do not agree with data in the CSM.
- room for the color-octet contributions.
- need to find the process in which the color-octet contributions are indeed dominant.
 - double quarkonium production?
- Tevatron and LHC open the double quarkonium production channel.
- LHC will produce a huge number of heavy quarkonium.

Double quarkonium production

• already predicted to test the color-octet mechanism at the Tevatron. Barger, Fleming, Phillips ('96)

 $\sigma(p\bar{p} \to \psi_{\mu\mu}\psi_{\mu\mu}X) \approx 0.14 \text{ pb.}$

- Double quarkonium production in the color-singlet model at the Tevatron.
 - color-singlet contribution dominates at $p_T < 4$ GeV.
- recently extended to the LHC.

Li,Zhang,Chao(PRD80,014020);Qiao,Sun,Sun(0903.0954)

- clean signals : 4 muon events for $J/\psi J/\psi$, $J/\psi \Upsilon$, $\Upsilon \Upsilon$ production.
- Previous works considered only identical quarkonium pair production;
 use gluon fragmentation approximation for the CO contributions
- extend the double quarkonium production of different flavor.
 - calculate the CO contributions fully instead of gluon frag. approx.

Qiao('02)

Color-singlet model

- The leading precoesses are of order $\, lpha_s^4 \, . \,$
- Two subprocesses at this order are

$$g + g \rightarrow Q_1 + Q_2$$
, dominant
 $q + \bar{q} \rightarrow Q_1 + Q_2$. ignore

- 31 Feynman diagrams.
- The schematic form of the cross section is

$$d\sigma[pp \to H_1(P_1) + H_2(P_2)] = \sum_{i,j,n_1,n_2} f_{i/p} \otimes f_{j/p} \otimes d\hat{\sigma}[ij \to \mathcal{Q}_1^{n_1} + \mathcal{Q}_2^{n_2}] \langle O_{n_1} \rangle_{H_1} \langle O_{n_2} \rangle_{H_2}$$

• $\mu_r = \mu_f = m_T = \sqrt{m_Q^2 + p_T^2}.$

Cross section for $J/\psi J/\psi$ production at the LHC

integrated cross section

Qiao,Sun,Sun(0903.0954)

a : color-octet (CO)

b : unpolarized color-singlet (CS)

c,d,e : polarizated color-singlet (CS)

 multiplied by branching fractions for J/ψ decay into muon pair.

• used the gluon fragmentation approximation.

	$\sigma(\text{events})$	$p_{Tcut}=3 \text{ GeV}$	$p_{Tcut}=4 \text{ GeV}$	$p_{Tcut}=5 \text{ GeV}$	$p_{Tcut}=6 \text{ GeV}$	$p_{Tcut}=7~{\rm GeV}$
Γ	-	5.83 pb(58324)	1.74 pb(17425)	0.56 pb(5607)	0.20 pb(1981)	$0.077 \mathrm{pb}(767)$
		2.55 pb(25543)	0.83pb(8262)	0.28 pb(2786)	0.10 pb(1014)	0.040 pb(401)
	⊥	3.95 pb(39425)	0.94 pb(9445)	0.24 pb(2380)	0.066 pb(660)	0.020 pb(204)
l	tot	12.33pb(123319)	$3.51 \mathrm{pb}(35131)$	1.08 pb(10773)	$0.37 \mathrm{pb}(3656)$	0.14 pb(1372)
CO-	$\perp_8\perp_8$	$2.90 \mathrm{pb}(29022)$	1.82 pb(18205)	1.15 pb(11461)	0.74pb(7399)	$0.49 \mathrm{pb}(4925)$

Double quarkonium production (same flavor)

- The color-singlet contribution is dominant at low p_T .
 - about 10⁸ events for $J/\psi J/\psi$ production with $\sqrt{s} = 14 \text{ TeV}$ and $\mathcal{L} \sim 100 \text{ fb}^{-1}$.

• The color-octet contribution may exceed the color-singlet one in the region $p_T > 6$ GeV.

• Thus could be possible to test the color-octet mechanism by measuring the double quarkonium production events with high p_T .

- but, the fragmentation approximation is valid only at large p_T .
- requires the comparison with the full calculation.
- need to resolve the scale uncertainties.

Color-octet model (full calculation)

• various combinations of intermediate states are allowed.

 ${}^{3}S_{1}^{(8)} + {}^{3}S_{1}^{(8)}, {}^{3}S_{1}^{(8)} + {}^{1}S_{0}^{(8)}, {}^{3}S_{1}^{(8)} + {}^{3}P_{J}^{(8)},$ ${}^{1}S_{0}^{(8)} + {}^{3}P_{0}^{(8)}, {}^{3}S_{1}^{(1)} + {}^{3}S_{1}^{(8)}, {}^{3}S_{1}^{(1)} + {}^{1}S_{0}^{(8)}, \cdots$

- We consider only ${}^{3}S_{1}^{(8)} + {}^{3}S_{1}^{(8)}$ combination because
 - ${}^{1}S_{0}$ and ${}^{3}P_{0}$ color-octet matrix elements may be much suppressed.
 - ${}^{3}S_{1}^{(8)}$ + ${}^{3}S_{1}^{(8)}$ combination will be dominant at large p_{T} .
- 68 Feynman diagrams.

gluon frag. vs. full calculation

• This choice violates gauge invariance with an error of $O(m_c^2/\hat{s})$.

 $J/\psi J/\psi$ production (full calculation)

- The differential cross section varies by about a factor 6 at small p_T and by about a factor 40 at large p_T .
- The CO contribution dominates over the CS contribution at $p_T > 16$ GeV.

Double quarkonium production (same flavor)

		Cross section [pb]			Cross section [pb]				:			
		$\mu = m_H$ for fragmentation			$\mu = m_T$ for fragmentation							
Final quarkonia	States $\langle P_{T\min} [\text{GeV}] \rangle$	3	7	10	15	20	3	7	10	15	20	
	${}^{3}S_{1}^{[8]} + {}^{3}S_{1}^{[8]}$	75.90	24.37	11.03	3.83	1.66	12.72	2.84	1.02	0.26	0.09	CO
$J/\psi + J/\psi$	${}^{3}S_{1}^{[1]} + {}^{3}S_{1}^{[1]}$	-	-	-	-		2757	32.61	2.92	0.16	0.02	CS
	${}^{3}S_{1}^{[8]} + {}^{3}S_{1}^{[8]}$	2.27	1.86	1.40	0.78	0.42	0.57	0.45	0.33	0.17	0.08	CO
1 + 1	${}^{3}S_{1}^{[1]} + {}^{3}S_{1}^{[1]}$	-	-	-	-	-	32.79	8.32	2.35	0.30	0.05	CS

• Production of identical quarknia can be tested at the LHC.

- If we consider the contributions from feeddowns of $\psi(2S)$ and χ_{cJ} , it seems that the color-octet mechanism may be testable at the LHC
- However we must resolve the large uncertainty from the scale dependence.
- The CS contribution might contaminate the CO contribution.
- We suggest the $J/\psi + \Upsilon$ production at the LHC.

Color octet

- The leading processes are of order $\, lpha_s^4 \, . \,$
- Among various combinations of intermediate states, we consider

 ${}^{3}S_{1}^{(8)} + {}^{3}S_{1}^{(8)}, {}^{3}S_{1}^{(1)} + {}^{3}S_{1}^{(8)}, {}^{3}S_{1}^{(8)} + {}^{3}S_{1}^{(1)}.$

- 36 Feynman diagrams for the color-octet pair.
- 5 Feynman diagrams for the color-singlet + color-octet pair.

Color singlet

- Tree-level color-singlet contribution accompanies at least two hard gluons.
 - suppressed by at least about a factor of $\alpha_s^2 m_c^2 m_b^2 / p_T^4$.
 - extra hard jets in the final state.

• The color-singlet contribution at one-loop level can appear via twogluon exchange. The relative size of the CO contribution to this is

$$\frac{(4\pi)^2 v_{J/\psi}^4 v_{\Upsilon}^4}{\alpha_s^2} \left(\frac{p_T^2}{m_c^2} \frac{p_T^2}{m_b^2}\right)^2 \sim 500 \text{ at } p_T = 5 \text{ GeV}.$$

• Thus we conclude that the color-singlet contribution is suppressed and also easily distinguishable.

• The $J/\psi + \Upsilon$ production at the LHC will provide good tests for the coloroctet mechanism with less backgrounds and without color-singlet contamination.

• If we cannot observe the events at the expected level, it would imply that the current values of the color-octet matrix elements are overestimated. $J/\psi \Upsilon$ production

- The differential cross section varies by about a factor 11 at small p_T and by about a factor 14 at large p_T .

		Cross section [pb]			Cross section [pb]						
		$\mu = m_H$ for fragmentation				$\mu = m_T$ for fragmentation					
Final quarkonia	States $\setminus P_{T\min}$ [GeV]	3	7	10	15	20	3	7	10	15	20
	${}^{3}S_{1}^{[8]} + {}^{3}S_{1}^{[8]}$	21.54	12.17	7.42	3.30	1.61	3.00	1.79	1.03	0.40	0.17
$I_{i} = \mathbf{x}$	${}^{3}S_{1}^{[1]} + {}^{3}S_{1}^{[8]}$	1.99	0.12	0.02	0.002	0.0002	1.47	0.80	0.01	0.001	0.0001
$J/\psi + 1$	${}^{3}S_{1}^{[8]} + {}^{3}S_{1}^{[1]}$	5.35	0.92	0.23	0.03	0.005	1.91	0.30	0.07	0.01	0.001
	Total	28.88	13.21	7.68	3.33	1.63	6.38	2.17	1.11	0.41	0.17

• expects 2 pb ~ 29 pb at the LHC.

- Feeddown may enhance the cross section by an order of magnitude.
- Production of different quarkonia can be observed at the LHC.

• Double quarkonium production at hadron colliders may provide another test ground of NRQCD.

• presented the first full calculation for the color-octet contribution to the double quarkonium production at the LHC.

• $J/\psi + \Upsilon$ production may be used to test the color-octet mechanism with less backgrounds and without color-singlet contamination.

• If one cannot see the $J/\psi + \Upsilon$ events at the expected level, it would imply that the current color-octet matrix elements are overestimated.

Backup slides

Color-octet mechanism

• In NRQCD, the $Q\bar{Q}$ pair can be produced in a color-octet state. The pair can evolve into a color-singlet quarkonium by emitting soft gluons.

 $\begin{aligned} |J/\psi\rangle &= O(1) |Q\bar{Q}({}^{3}S_{1}^{(1)})\rangle \\ &+ O(v) |Q\bar{Q}({}^{3}P_{J}^{(8)})\rangle + O(v^{2}) |Q\bar{Q}({}^{1}S_{0}^{(8)})\rangle \\ &+ O(v^{2}) |Q\bar{Q}({}^{3}S_{1}^{(8)})\rangle + O(v^{4}). \end{aligned}$

• The color-octet mechanism could resolve the long-standing IR divergence problems in the P-wave quarkonium decays.

 $IR_{CS} + IR_{CO} = 0.$

Summary of single quarkonium production

at N	LO	Tevatron	HERA	B factories	
	$p \overline{p}$		e^-p	e^-e^+	
CC	σ	not enough	not enough	may explain	
CS	α	disagree	inconsistent at high P _T		
<u> </u>	σ	may be needed	can explain	unnecessary?	
CO	α	not completed	consistent		

- the CS contributions could not explain the data.
- room for the color-octet contributions?
- no conclusive constraints on the ${}^{3}S_{1}$ color-octet matrix element.

Color-octet model (previous works)

fragmentation diagrams

• The leading precoesses are of order $\, lpha_s^4 \, . \,$

• gluon fragmentation approximation.

- dominant process is two real gluon production, followed by the fragmentation of each gluon into a quarkonium in the ${}^{3}S_{1}$ color-octet state.

- 4 Feynman diagrams.
- The schematic form of the cross section is $d\sigma^{H_1(P_1)+H_2(P_2)} = f_{g/p} \otimes f_{g/p} \otimes D_{g \to H_1}(z_1, m_{Q_1}) \otimes D_{g \to H_2}(z_2, m_{Q_2})$ $\otimes d\sigma_{gg \to gg}(E_1/z_1, E_2/z_2),$ $D_{g \to H_i}(z_i, m_{H_i}) = \frac{\pi \alpha_s}{24m_{H_i}^3} \delta(1-z_i) \langle O_8(^3S_1) \rangle_{H_i}.$

• $\alpha_s(m_{J/\psi}) = 0.286, \ \alpha_s(m_{\Upsilon}) = 0.201.$

Color-octet model (previous works)

• easy to include contributions from feeddown of $\psi(2S)$ and χ_{cJ} .

$$gg \to J/\psi\psi(2S), gg \to J/\psi\chi_{cJ}, gg \to \psi(2S)\chi_{cJ}, \dots$$
$$d\hat{\sigma}_{Q_1+Q_2} = d\hat{\sigma}_{gg}(\frac{\pi\alpha_s(4m_c^2)}{24m_c^3})^2 [\langle O_8^{J/\psi}(^3S_1)\rangle + \langle O_8^{\psi'}(^3S_1)\rangle Br(\psi' \to J/\psi) + \sum_{J=0}^2 (2J+1)\langle O_8^{\chi_{c0}(1P)}(^3S_1)\rangle Br(\chi_{cJ} \to J/\psi)]^2.$$

• increases the cross section by about a factor 6 with the following choices for the matrix elements:

$$\begin{array}{ll} \langle O_1^{J/\psi(1S)}(^3S_1)\rangle & 1.4 \\ \langle O_8^{J/\psi(1S)}(^3S_1)\rangle & 0.39 \times 10^{-2} \\ \langle O_8^{\psi'(2S)}(^3S_1)\rangle & 0.37 \times 10^{-2} \\ \langle O_8^{\chi_{c0}(1P)}(^3S_1)\rangle & 0.19 \times 10^{-2} \end{array}$$

Cross section for double quarkonium production

Li,Zhang,Chao(PRD80,014020)

$P_T > 3 \text{ GeV}$	CTE	Q6L1	CTEQ5L			
Final States	$\sigma_{\text{Tevatron}}[nb]$	$\sigma_{\rm LHC}[nb]$	$\sigma_{\text{Tevatron}}[nb]$	$\sigma_{\rm LHC}[nb]$		
$\eta_c \eta_c$	$4.99 imes 10^{-3}$	4.10	$4.35 imes 10^{-3}$	4.2		
$J/\psi J/\psi$	$8.46 imes 10^{-2}$	4.25	$7.49 imes 10^{-2}$	4.6		
$\eta_b \eta_b$			$2.66 imes 10^{-5}$	$1.16 imes 10^{-2}$		
ΥY			1.74×10^{-4}	2.46×10^{-2}		
$B_c \bar{B}_c$	$3.86 imes 10^{-3}$	$2.72 imes 10^{-1}$				
$B_c \bar{B}_c^*$	$1.00 imes 10^{-3}$	$8.37 imes 10^{-2}$				
$B_c^* \bar{B}_c^*$	$8.23 imes 10^{-3}$	$7.08 imes10^{-1}$				

26

$\Upsilon \Upsilon$ production (full calculation)

- The choices for the scale yield a factor 4 difference at small p_T .
- It becomes about a factor 6 at p_T =50 GeV.
- The CO contribution dominates over the CS contribution at p_T>22 GeV.