Microscopic Quirks at Hadron Colliders

GuiYu Huang

University of California, Davis

Pheno '10, May 10, 2010

R. Harnik, GH, M. Luty, S. Mrenna (in progress)

▲□ ▶ ▲ ≣ ▶ めへぐ

Color vs infraColor

- When QCD strings are stretched, they can break and form new color-neutral states.
- For infracolor strings, energy economy of heavy fermions: string stretching → kinetic energy loss of quirks
- InfraColor bound state resembles classical strings

Hierachy Problem

- top contribution to Higgs mass may be canceled by a partner particle: stop, top prime SUSY, Little Higgs
- A new SU(3) SUSY \rightarrow Folded SUSY, Burdman et al (2006) Little Higgs \rightarrow Twin Higgs, Chacko et al (2005)

(Non)Minimal Extensions of SM

- Generic layers that can be superimposed on top of any BSM models
- Not necessarily to addressing problems with SM
- Hidden Valley, Quirk, ...

Signal in the Soft Physics

besides γ , μ , e, τ , b, jets and MET with large p_T soft physics: π , γ etc.

$$K \sim m_Q \sim \Lambda_{\rm IC}^2 \Longrightarrow L \sim \frac{m_Q}{\Lambda_{\rm IC}^2} \gg \Lambda^{-1}$$

$$L \sim 10 \mathrm{cm} (\frac{\Lambda_{\mathrm{IC}}}{\mathrm{keV}})^2 \frac{m_Q}{\mathrm{TeV}}$$

- $1 \text{mm} \lesssim L \lesssim 10 \text{m} \iff 100 \text{eV} \lesssim \Lambda_{\text{IC}} \lesssim 10 \text{keV}$ magnetic bending (tracker resolution and detector size) Kang, Luty (2008)
- $1 \mathring{A} \lesssim L \lesssim 1 \text{mm} \iff 10 \text{keV} \lesssim \Lambda_{\text{IC}} \lesssim 1 \text{MeV}$ high ionization track
- $L \lesssim 1 \text{\AA} \iff 1 \text{MeV} \lesssim \Lambda_{IC}$ subatomic size, little ionization, microscopic

MeV $\leq \Lambda \ll m_Q$, *Q*: fundamental in new 'infracolor' group

- Production
 - EW or QCD charged, can be strongly produced
 - Infracolor charge, PAIR produced as IC singlet
- QCD String and Infracolor String Formation
 - QCD string fragments into QCD hadrons and Qq hadrons
 - Infracolor string oscillates, loses engergy with each crossing
 - $\sigma \sim$ geometrical; interaction rate \sim 1/crossing Assume $\Lambda_{QCD} > \Lambda$, no IC glueball radiation
 - $\pi^0 \rightarrow \gamma \gamma$, focus on γ s. No π^0 reconstruction.
- $Q\bar{Q}$ bound state annihilates into gg, $q\bar{q}$ or $\ell^+\ell^ BR(Q\bar{Q} \rightarrow \ell\ell) \sim \alpha^2/N_C^2$
- Prompt decay/annihilation

- One flavor of heavy quirk
- Only at PYTHIA level + crude detector simulation. No PGS.(yet)
- Hard process (dijet/dilepton etc) + Soft physics Begin by looking at lepton mode.

in the soft physics ?

Distinguishing signal from background

pion/photon emission, pattern recognition dipole/quadrupole/...

Need to theoretically model the emission well, implement in Monte Carlo, and experimentally recognize pattern with efficiency

simpler algorithm?

Emission Pattern?

Event examples

$$N_{\gamma} = 279, \ 95, \ 34$$

◆□ ▶ ▲ ■ ▶ シタペ

Invariant Mass of $\mu^+\mu^-$

Hard process:

 $Q\bar{Q}$ signal resembles a narrow resonance

Cross section not normalized!

▲ □ ▶ ▲ □ ▶ シタぐ

Number of Photons

$$\pi^0 \Rightarrow \gamma\gamma \tag{1}$$

soft tracks, calorimeter hits

 $\mu^+\mu^-$ + multi- γ

- Photon p_T acceptance: $p_T(\gamma) \ge 500$, 200, 20 MeV
- Single Photon Efficiency ϵ_{γ} : $\sum N_{\gamma}$ and $\sum E_{\gamma}$ scale as $\epsilon_{\gamma} = \sum \gamma_{\gamma} = \sum \sum \gamma_{\gamma} = \sum \gamma_{\gamma} = \sum \sum \gamma_{\gamma} = \sum \sum \gamma_{\gamma} = \sum \sum \sum \gamma_{\gamma} = \sum \sum \gamma_{\gamma} = \sum \sum \gamma_{\gamma} = \sum \sum \sum \gamma_{\gamma} = \sum \sum \sum \gamma_{\gamma} = \sum \sum \sum$

Number of Photons

Signal vs. Background

$$p_T(\gamma) \ge 200 \text{ MeV}$$

 $\epsilon_s = 0.72, \epsilon_b = 0.045, \text{ for } N_{\gamma} > 30$

▲□ ▶ ▲ ≣ ▶ めへぐ

Thrust Distribution

Measures event shape: non-sphericity (dipole)

 $\epsilon_s = 0.78$, $\epsilon_b = 0.17$, for thrust < 0.93

- High thrust from hard muon pairs.
- Photons bremmed off muons are nearly colinear.
- Fireball (\sim spherical) from quirky strings reduces thrust $_{\pm}$, $_{\sim \sim \sim}$

 N_{γ} vs. Thrust

▲□ ▶ ▲ ≧ ▶ りへぐ

Hadronic Mode (dijet+fireball)

CDF 95% Exclusion Limits

Dijet Resonance Search

Assumes 100% annihilation at rest

CDF Simulations for Dijet Resonances

need $\epsilon_s/\epsilon_b > 10$

▲□ ▶ ▲ ■ ▶ めへぐ

$\sim 1 \, fb^{-1}$ data

- $\sigma_B \sim 3$ nb, $B \sim 3e6$ events (with efficiency)
- $\sigma_S \sim 20$ pb, $S \sim 2e4$ events (without efficiency, $\epsilon \sim 0.1$?)

• $\epsilon S/\sqrt{B} \sim 1$

• additional efficiencies based on N_{γ} , thrust cuts etc. $\epsilon_S/\sqrt{\epsilon_B} \sim 0.6/\sqrt{0.008} \sim 6$

S and B Efficiencies - Tevatron

number of events per bunch crossing

$$\mu \equiv \sigma L_b, \qquad L_b = L/\Delta t_b$$

$$\sigma_{\text{Teva}} \sim 40 \text{mb}, \qquad \sigma_{\text{LHC}} \sim 60 \text{mb}$$

$$L \sim 10^{32} \mathrm{cm}^{-2} \mathrm{s}^{-1}$$

More problematic at Tevatron than at early LHC

Effect of Pileup

- background tail at large N_{γ}
- One solution: Restrict rapidity further from beam $|\eta_{\gamma}| < 2$

Ongoing...

- Hard + Soft physics
- Fireball signature. Particle multiplicity, event shape ...
- Multiple interactions and pileup problematic, but not unbeatable