Electroweak radiative corrections to neutrinonucleon scattering and Finite Fermion Mass Effects at NuTeV

#### Kwangwoo Park SMU PHENO2010, May 10 2010

in collaboration with Ulrich Baur and Doreen Wackeroth (SUNY at Buffalo)



- 1. NuTeV anomaly
- What's new in our calculation
  Finite muon and charm quark masses !
- 3. Phase space slicing method for the not-so-heavy fermion mass
- 4. Numerical result



average by about  $3\sigma$  (NuTeV anomaly)

LEP EWWG 2008( http://lepewwg.web.cern.ch/LEPEWWG/plots/summer2009/ )

#### **Our Calculation**

- ► Include full electroweak  $O(\alpha)$  corrections.
- study the effect of finite fermion mass

#### "Massless" and "Massive" calculations

"Massless" : All fermion masses have only been used to regularize mass singularities, otherwise neglected.

"Massive" : Heavy fermion masses (muon, charm quark) have been taken as non-zero value everywhere.

# Phase Space Slicing Method for not-so-heavy muon mass

Photon radiation from a fermion leg has the term:

$$\frac{1}{k \cdot p} = \frac{1}{k^0 p^0 (1 - \cos \theta)}$$

 $E_{\gamma}(=k^{0})$  when the fermion is massless.

Phase space can be sliced into three regions:

1. The region of soft photon radiation  $(2\rightarrow 2)$ 

-  $k^0 \leq \delta_s \sqrt{s}/2$ 

k

 $u_{\mu}$ 

2. The region of collinear radiation  $(2\rightarrow 2)$ 

-  $1 - \cos \theta \leq \delta_c$ 

3. Finite hard photon radiation  $(2 \rightarrow 3)$ 

# Phase Space Slicing Method for not-so-heavy muon mass



Numerically, collinear singularity is NOT a point BUT a region !!

# Independence on phase space parameters



0.0020

1 × 10 <sup>- 3</sup>

 $5 \times 10^{-2}$  1  $\times 10^{-5}$ 

 $5 \times 10^{-5} 1 \times 10^{-5}$ 

 $\delta_c$ 

5×10 1 0.001

-0.0025

0.1

-0.0020

0.0025

10<sup>-5</sup>

10

0.001

 $\delta_s$ 

0.01

**Effect of Mass: NC,CC plots** 



#### **Numerical Results: Ratio plots**



E. A. Paschos and L. Wolfenstein, Phys. Rev. D7, 91 (1973)

### Effect on $\sin\theta_w$ and $M_w$

We define the leading order ratio  $(R_o^v)$ , the contribution of  $O(\mathbb{R})$  corrections for NC  $(R_{NC}^v)$  and CC  $(R_{CC}^v)$  as follows:

 $R_{o}^{v} = \frac{\sigma_{o,NC}^{v}}{\sigma_{o,CC}^{v}}, \qquad \delta R_{NC}^{v} = \frac{\delta \sigma_{NC}^{v}}{\sigma_{o,NC}^{v}}, \qquad \delta R_{NC}^{v} = \frac{\delta \sigma_{CC}^{v}}{\sigma_{o,CC}^{v}}.$   $\frac{R_{o}^{v}}{R_{o}^{v}} \frac{\delta R_{NC}^{v}}{\delta R_{NC}^{v}} \frac{\delta R_{CC}^{v}}{\delta R_{CC}^{v}} \frac{\Delta \sin^{2} \theta_{W}}{\Delta \sin^{2} \theta_{W}}$   $Massless \ 0.3052(0.04) \ 0.0532(0.38) - 0.0784(1.43) - 0.0118(0.69)$   $Massive \ 0.3152(0.04) \ 0.0540(0.59) - 0.0622(0.80) - 0.0038(0.46)$   $\Delta \sin^{2} \theta_{W} = -\delta \sin^{2} \theta_{W} = \frac{\frac{1}{2} - \sin^{2} \theta_{W} + \frac{10}{27} \sin^{4} \theta_{W}}{1 - \frac{40}{27} \sin^{2} \theta_{W}} \left(\delta R_{NC}^{v} + \delta R_{NC}^{v}\right)$ 

Difference between massless and massive:  $\approx$  -0.0080  $\mp$  0.0008 (CTEQ6.6, Mc=1.3Gev,  $E_{had}^{LAB} \ge 20 GeV$ )

### Shift of Mw

Using  $\sin^2 \theta_W = 1 - M_W^2 / M_Z^2$ , we can estimate the change in  $M_W$ :

$$\Delta M_{W} = M_{W}(massive) - M_{W}(massless)$$
$$\approx \frac{-M_{Z}^{2}}{2M_{W}} [\Delta \sin^{2} \theta_{W}]_{massless}^{massive}$$
$$= 0.4136 \pm 0.0043 \ GeV$$



### Conclusion

- ► We calculated the complete eletroweak  $O(\alpha)$  corrections to neutrino-nucleon scattering processes based on the massless fermion approximations (used in the NuTeV analysis) and with the full fermion mass dependence.
- ► The calculation is implemented in a Monte Carlo program
- ► We studied the shift in  $\sin^2 \theta_W$  and  $M_W$  due to fermion mass effect and found that there was a finite fermion mass effect !
- Although more detailed studies are needed with more realistic cuts, this result shows that fermion mass effects may explain some of the deviations observed by the NuTeV collaboration. ( we are preparing another paper for this work with NuTeV collaboration.)

## BackUp Slides

### **Calculation: Leading Order**



 $\blacktriangleright$  L<sup>1</sup> and H<sup>0</sup> are function of fermion masses:

<sup>3</sup>⁄4<sub>NC</sub> ~ L¹(mº, mº , ...) Hº(mq, mq, ...) — massive terms vanish (NC)

 $\frac{3}{4}_{CC} \sim L^1(m^{o}, m^1, ...) H^{o}(mq, mq',...) - massive terms survive (CC)$ 

### **Calculation: Mass effect**

Ve

 $p_4$ 

 $p_3$ 

 $W^{\pm}$ 

μ

 $p_1$ 

 $p_2$ 

Consider self-energy correction:

Two-point self-energy function:

$$\widehat{\Sigma}_{\rho\sigma}^{W} = \left(g_{\rho\sigma} - \frac{k_{\rho}k_{\sigma}}{k^{2}}\right)\widehat{\Sigma}_{T}^{W} + \frac{k_{\rho}k_{\sigma}}{k^{2}}\widehat{\Sigma}_{L}^{W}$$

Contribution to cross section:

$$\sigma_{se} \sim \sigma_{o} \left( \frac{2 \hat{\Sigma}_{T}^{W}}{t + M_{W}^{2}} - \frac{m_{\mu}^{2} m_{c}^{2} u(\hat{\Sigma}_{L}^{W} - \hat{\Sigma}_{T}^{W})}{4 t (t + M_{W}^{2})} \right)$$

where, t and u are Mandelstam variables.

- Vertex and Box Corrections also have similar expression like this
- In small t region, second term is NOT negligible.
- Small t region corresponds to small x region,

where x is momentum fraction

#### **Numerical Results: Input parameters**

 $\alpha(0) = 1/137.03599911$  $M_{7} = 91.1876 \ GeV$  $m_{e} = 0.51099892 MeV$  $m_{\mu}=66 MeV$  $m_c = 1.3 GeV$  $m_t = 178 \ GeV$  $V_{ud} = 0.9754$  $V_{cd} = 0.2205$ 

 $M_{W} = 80.425 \ GeV$  $M_{H} = 115 \ GeV$  $m_{\mu} = 105.658369 MeV$  $m_d = 66 MeV$  $m_s = 150 MeV$  $m_{\rm b}$ =4.3 GeV  $V_{\mu s} = 0.2205$  $V_{cs} = 0.9754$ 

#### **Calculation**

$$R = \frac{\sigma_{NC}^{\nu}(\nu N \to \nu X) - \sigma_{NC}^{\bar{\nu}}(\bar{\nu} N \to \bar{\nu} X)}{\sigma_{CC}^{\nu}(\nu N \to l X) - \sigma_{CC}^{\bar{\nu}}(\bar{\nu} N \to \bar{l} X)}$$
$$= \rho^{2} \left(\frac{1}{2} - \sin^{2}\theta_{W}\right)$$

$$\sin^2 \theta_W = 1 - \frac{M_W^2}{M_Z^2}$$
 (On-shell scheme)

► Data( $\frac{3}{4}$ ) + Theory( $\frac{1}{2}$ )  $\rightarrow sin^2 \mu_W \rightarrow M_W$ 

NuTeV :  $\sin^2 \mu_w = 0.22773 \mp 0.00135$  (stat)  $\mp 0.00135$  (stat)

• Average: 
$$\sin^2 \mu_w = 0.2227 \mp 0.00037$$

NuTeV G. P. Zeller et al., Phys. Rev. Lett. **88**, 091802 (2002) E. A. Paschos and L. Wolfenstein, Phys. Rev. **D7**, 91 (1973)

### **Possible explanations**

QCD corrections

Perturbative QCD corrections

→ small

Uncertainties on Parton Distribution Function (PDF)

 $\rightarrow$  in future global analysis

Isospin breaking

 $\rightarrow\,$  large isospin violation in PDF could explain NuTeV anomaly

#### Electroweak radiative corrections

This talk is about both mainly Electroweak radiative corrections and slightly isospin breaking.