Model of leptons from $SO(3) \rightarrow A_4$

Joshua Berger

Cornell University with Yuval Grossman JHEP 1002:071,2010 (arXiv:0910.4392)

Pheno 2010 Symposium University of Wisconsin-Madison May 11, 2010

- Apparent pattern in neutrino mixing can be explained using nonabelian discrete symmetry A₄
- Problem: where does discrete group A₄ come from?
- Idea: get A₄ by spontaneously breaking continuous group SO(3) with scalar in **7** representation
- Can get correct mixing and mass spectrum, but fine-tuning remains

- 3 light neutrino states have flavor state-mass state mixing
- Described by 3×3 unitary matrix U

$$|U| pprox egin{pmatrix} 0.823 & 0.554 & 0.126 \ 0.480 & 0.558 & 0.677 \ 0.305 & 0.618 & 0.725 \end{pmatrix}.$$

• Is there a pattern in |U|?

ヨト イヨト

• Harrison, Perkins, and Scott pointed out that

$$U \approx U_{\rm HPS} = \begin{pmatrix} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

- Can we get such a pattern in U?
- One way: use non-abelian discrete symmetries
- One possible group: A₄ (Ma et. al., Altarelli et. al.)
- Industry of ν model building using A_4 : many common features

A₄: Rotational Symmetries of the Tetrahedron

- Rotational symmetries of the tetrahedron
- 12 elements: Identity, 3 rotations by 180°, 4 rotations by 120°, 4 rotations by 240°
- Subgroup of *SO*(3)
- Representation: singlet, vector, and two "weird" complex 1 dimensional representations

- One issue with A_4 models: why A_4 ?
- Generally no motivation from UV physics
- Try to get A₄ out of a more familiar continuous symmetry group
- A_4 contained in SO(3), so try to start with it
- In order to get the results of A_4 models:
 - Spontaneously break $SO(3) \rightarrow A_4$
 - Put matter in appropriate representations

- Single triplet scalar won't do it
- But higher representation scalars have non-trivial potentials
- Can get vacua with unbroken non-abelian discrete symmetries
- Motivate a choice of representation: look for a representation of SO(3) that contains a singlet of A₄
- The first representation that does is the 7 (spin 3) representation
- Minimize the potential for 7: over a large portion of parameter space, get SO(3) → A₄

- A₄ models need non-trivial ("weird" complex) representations of right-handed charged leptons
- But all representations of SO(3) are "normal" and real
- Consequence: RH μ and τ part of the same SO(3) multiplet
- An extra scalar with particular VEV is needed to get the right masses

- Mass matrices have same form as in A₄ models
- With a little effort, can get low-energy spectrum for SM leptons (more on this soon)
- $U_{\rm HPS}$ is reproduced as the neutrino mixing matrix
- Lepton mass measurements constrain scales of the model
- Many scales: $\Lambda \gg v_T \gg v \sim v' \sim v_5 \gg M \gg v_H$
 - v not more than a factor of about 100 below Λ
 - $\nu' \gg M$ to get right neutrino mass splittings

- Right-handed μ , τ come as part of the same multiplet
- $\bullet\,$ Non-trivial to find a way to split the mass of μ and τ
- $m_\mu/m_ au \sim 1/16$ from measurements
- In our model: unrelated scales must cancel to within 1/16
- Also: need an arbitrary phase to be near-maximal
- There is fine-tuning in this model

- Models with an A₄ discrete symmetry can explain apparent pattern of neutrino mixing
- The A₄ symmetry and matter content can be obtained by SSB of SO(3), giving U = U_{HPS}
- Issues with the model:
 - Vacuum alignment: why to scalars get VEVs with the right pattern?
 - Anomalies: new fermions can generate anomalies in gauge groups
 - Fine-tuning: cancelation between scales to get lepton masses

$$V = -\frac{\mu^2}{2} T^{abc} T^{abc} + \frac{\lambda}{4} (T^{abc} T^{abc})^2 + c T^{abc} T^{bcd} T^{def} T^{efa}.$$

Three cases:

- For c > 0, minimum has A_4 symmetry
- For $-\lambda/2 < c < 0$, minimum has D_3 symmetry
- For $c < -\lambda/2$, potential is unstable

Two cases where discrete symmetries arise: breaking a continuous gauge symmetry to a discrete subgroup is generic!

Backup: Model with SSB

• Model with symmetries $SU(2)_L \times U(1)_Y \times SO(3)_F \times Z_2$

Field	$SU(2)_L$	$U(1)_Y$	<i>SO</i> (3) _{<i>F</i>}	<i>Z</i> ₂			
ψ_ℓ	2	-1/2	3	_			
ψ_{f}	1	-1	3	—	Г	Field	50(3) SB
ψ_{e}	1	-1	1	+	-		50(5) 5D
2/2	1	_1	5	+		н	None
φ III	1	0	2	•		ϕ	Z_3
ψ_{n}	1	0	3	_		<i>d</i> ′	75
H	2	1/2	1	+		Ŷ	-2
ϕ	1	0	3	-		φ_5	Z3
ϕ'	1	0	3	+		1	A4
ϕ_5	1	0	5	—			
Т	1	0	7				

Josh Berger (Cornell University)

Model of leptons from $SO(3) \rightarrow A_4$

Pheno 2010 05/11/2010

- $\bullet~\phi$ couples equally to Ψ_{μ} and $\Psi_{\tau}\implies$ degenerate muon and tau
- Add another scalar ϕ_5 that transforms as a 5
- New coupling y_m^5 between $\psi_\ell \phi_5 \psi_m$
- However, mass splitting depends on phase difference between couplings to $\psi_m!$

$$m_{ au} - m_{\mu} \sim vv_5 \cos[\arg(y_m y_m^{5*})]$$