

0

Search for Randall-Sundrum Gravitons at CDF

Tingjun Yang FNAL On behalf of the CDF collaboration

PHENO 2010 University of Wisconsin, May 10, 2010

5/10/10 PHENO 2010

Randall-Sundrum Extra Dimension Model

- Hierarchy problem: large disparity between the Planck scale (10¹⁶TeV) and electroweak scale (~ITeV).
- Randall-Sundrum extra dimension model
 - 5-dimensional warped geometry
 - Weak brane $\phi=\pi$ and Planck brane $\phi=0$
- Hierarchy is generated by a warp factor $exp(-kr_c\pi)$
 - k: curvature of extra dimension
 - r_c: compactification radius of extra dimension
- Kaluza-Klein tower of graviton states
 - Mass of first excitation: m₁
 - Width parameter: k/M_{Pl}
- Decay products of RS graviton can be probed at hadron collider
 - \circ G-> $\gamma\gamma$, G->II, etc.
 - Spin-2: Γ (G-> $\gamma\gamma$) = 2Γ (G->II)
- We performed a search for RS gravitons in the diphoton channel at CDF using 5.4fb⁻¹ of Run II data.

The Tevatron and CDF

Tevatron:

- Proton-antiproton accelerator
- $\sqrt{s} = 1.96 \,\text{TeV}$
- Delivered 8.6 fb⁻¹
- Recorded 7.1 fb⁻¹

<u>CDF</u>

- Collider Detector at Fermilab
- Tracking (large B field):
 - Silicon tracking
 - Wire Chamber
- Calorimetry:
 - Electromagnetic (EM)
 - Hadronic
- Muon system

Analysis Overview

- Event selection
- Signal efficiency: Pythia MC
- Background estimation
 - SM diphoton background
 - Jets faking photons
- Upper limits on σ×Br(G->γγ) as a function of mass
- Lower limits on graviton mass as a function of k/M_{Pl}

Diphoton Event Selection

- Used a combination of 4 triggers to select di-photon events
 - I00% efficient for m(γγ)>50GeV
- Interaction vertex in the fiducial region
- Standard CDF photon ID
 - Transverse shower profiles consistent with a single-photon
 - Photon candidate is isolated
- Both photons in the central calorimeter ($|\eta| < 1$)
- $E_t > 15 GeV$ for each photon, $m(\gamma\gamma) > 30 GeV$
- Correct Photon selection efficiency and EM energy scale based on Z->ee events

Signal Efficiency and Event Yield

- Generate signal MC using Pythia
 - Masses from 200 GeV to 1.1 TeV at 100 GeV intervals
 - k/M_{Pl}=0.01: decay width much smaller than detector resolution
- Rising shape caused by detector acceptance
- Systematic uncertainty on expected signal events:
 - ~10%: luminosity and ISR/FSR

SM Background: QCD diphotons

- Shape evaluated with Diphox NLO cross section MC
- Shape corrected by selection efficiency evaluated with Pythia diphoton MC
- Systematic uncertainty:
 - ~20%: PDFs and Q² scales (μ_F , μ_f , μ_R)

Background Fit

- Fit data diphoton mass spectrum with Diphox + a function form of 2 exponentials (jets faking photons).
- Allow normalization of Diphox to float, the best fit normalization is 1.016.
- Contribution of jets faking photons is negligible for mass > 200 GeV.
- Largest excess at 200 GeV.

Bump Search

- Performed a frequentist model independent search for excess.
- Calculated the probability for the background to fluctuate to the level of the data or higher for every point in the mass spectrum.
- Background uncertainty is integrated out assuming it is Gaussian distributed.
- The expected range and 3 σ level are determined through pseudo-experiments.

Cross Section Limits

Pythia LO cross section calculation is corrected by K-factor (1.54 at 200 GeV decreasing to 0.98 at 1 TeV).

Limit on RS Model

- Limit greatly improved over previously CDF published results.
- M_G >472 GeV for k/ M_{Pl} = 0.01 and M_G >976 GeV for k/ M_{Pl} = 0.1

Summary

- We have performed a search for RS gravitons in the diphoton decay channel using 5.4 fb⁻¹ of data collected at CDF.
- Our data mass spectrum is consistent with the SM expectation.
- We have improved the limits on the RS mass:
 - $^\circ$ M_G>472 GeV for k/M_PI = 0.01 and M_G>976 GeV for k/M_PI = 0.1

Backup Slides

Signal Shape

Signal Systematics

Background Systematics

Diphoton Selection Efficiency

5/10/10 PHENO 2010

5/10/10 PHENO 2010