Clean Signals of Little Randall-Sundrum Models at the LHC

Hooman Davoudias

Brookhaven National Laboratory

Based on:

• H. D., G. Perez, and A. Soni

Phys.Lett.B665:67-71,2008, arXiv:0802.0203 [hep-ph]

• H. D., S. Gopalakrishna, and A. Soni

Phys.Lett.B686:239-243,2010, arXiv:0908.1131 [hep-ph]

• H. D., T. McElmurry, and A. Soni

Work in progress.

Introduction:

- SM effective theory below scale Λ .
- Precision EW: $\Lambda \gtrsim 10$ TeV; Flavor: $\Lambda \gtrsim 1000$ TeV.
- SM poses unresolved questions:
 - The hierarchy problem: Why is $m_H \ll \Lambda$?

 $\langle H \rangle \sim m_H \sim 10^2 \text{ GeV}; \ \delta m_H^2 \sim \Lambda^2.$

- Flavor puzzle: pattern of fermion masses and mixing.
- Beyond SM physics proposals: SUSY, strong dynamics,....

Warped Hierarchy/Flavor Models

• Randall-Sundrum Model: Randall, Sundrum, 1999 A slice of AdS₅.

Flat Planck (UV), TeV (IR) branes.

• Metric: $ds^2 = e^{-2ky}\eta_{\mu
u}\,dx^\mu dx^
u - dy^2$.

 $k \lesssim M_5$ and $y \in [0, \pi r_c]$.

• Redshift: $e^{-kr_c\pi}\langle H_5
angle\sim m_W$; $\langle H_5
angle\sim k.$

 $k \gg 1$ TeV with $kr_c\pi \gtrsim 10$ (Hierarchy).

• **TeV-scale Kaluza-Klein (KK) modes** Collider signals.

• Stabilization: radion scalar ϕ .

 $m_\phi \lesssim m_{KK}$ Goldberger, Wise, 1999

- Localized fermions via 5D masses, $m/k \sim 1$.
- UV(IR)-localization: Light (heavy) fermion. Grossman, Neubert, 1999
- Large effective cutoff scales for UV-localized flavors.

Gherghetta, Pomarol, 2000

Little Randall-Sundrum (LRS) Models

H.D., Perez, Soni, 2008

- RS as a model of <u>flavor</u>: $M_5 \ll \overline{M}_P$ viable option.
- $M_5 \gg$ TeV needed to suppress unwanted (FCNC,...) operators.
- Volume-truncated RS models: $1 \ll kr_c \pi \ll 35$.

- . . .

- Truncation: some unwanted contributions suppressed.
- tree-level oblique parameter $T_{\rm tree} \propto k r_c \pi$ in RS models.
- $\delta Z b \overline{b}$ from zero-mode-KK mixing after EWSB ~ $k r_c \pi$.

• $m_{KK} \gtrsim 2-3$ TeV: 5D custodial symmetry to suppress δT from UV-sensitive loops. Agashe, Delgado, May, Sundrum, 2003 Carena, Pontón, Santiago, Wagner, 2007

- Explain $\langle H \rangle / M_5 \ll 1$ hierarchy \Rightarrow warped TeV-scale KK modes.
- LRS: significant improvement in *clean* collider signals.
- Flavor constraints on LRS from ϵ_K : $k\pi r_c \gtrsim 7$ ($M_5 \gtrsim 10^4$ TeV). Bauer, Casagrande, Grunder, Haisch, Neubert, 2008

Little Z' Couplings

- LRS <u>truncation</u> factor: $y \equiv (kr_c|_{RS})/(kr_c|_{LRS})$ (y > 1)
- Gauge KK mode couplings:

 $g_{KK}|_{UV} \sim g_4/\sqrt{kr_c\pi}$ (q,e,\ldots) ; $g_{KK}|_{IR} \sim g_4\sqrt{kr_c\pi}$ (H,t,\ldots)

Example:
$$\sigma(q\bar{q} \to Z' \to \ell^+ \ell^-) \propto \overbrace{\Gamma(Z' \to q\bar{q})}^{\sim y} \overbrace{\mathsf{BR}(Z' \to \ell^+ \ell^-)}^{\sim y^2}$$

 $|\mathcal{S} \sim y^3|$ and $|\mathcal{S}/\mathcal{B} \sim y^4|$! Background: $\mathcal{B} \sim 1/y$ (over width)

• Experimental sensitivity to the <u>UV-brane</u> scale.

 $y \approx 1 \Rightarrow M_5 \sim \bar{M}_P$; $y \gg 1 \Rightarrow M_5 \ll \bar{M}_P$.

Assume a TeV-scale KK mode is discovered.

Question:

Is the Planck-weak hierarchy resolved?

Some clean signals sensitive to truncation.

Experimental handle on $kr_c\pi$ (M_5) in typical models.

Dilepton Channel LHC Reach for the Little Z'

H.D., Gopalakrishna, Soni, Phys.Lett.B686:239-243,2010

• Cuts: $|\eta_\ell| <$ 3.0, $p_{T_\ell} >$ 100 GeV, $M_{\ell^+\ell^-}$ within $M_{Z'} \pm$ 100 GeV.

- Background: irreducible SM only, due to low leptonic jet-fake rate (10^{-3}) .
- \mathcal{L}_5 : $\int L dt$ for 5σ signal (\geq 3 events) in $pp \rightarrow \ell^+ \ell^-$ ($\ell = e \text{ or } \mu$).
- For $kr_c\pi \approx 7$:

 $M_{Z'} \approx 2(3)$ TeV at $\sqrt{s} = 10(14)$ TeV with 1(4) fb⁻¹.

• Original RS ($kr_c\pi \approx 35$): $M_{Z'} \approx 3$ TeV, $\sqrt{s} = 14$ TeV, 300 fb^{-1} (any channel).

Little KK gluons

- Expect same enhanced *production* (coupling to $q\bar{q}$) for $g^{(1)}$.
- Light quark decay modes overwhelmed by large QCD background.
- \Rightarrow Discovery signal: $g^{(1)} \rightarrow t\overline{t}$.
- 5 σ discovery estimates for $g^{(1)}$: $pp \to t\bar{t} \to bW(jj)\,\bar{b}W(\ell\nu)$
- Hadronic *t* reconstruction efficiency 5%. Agashe, Belyaev, Krupovnickas, Perez, Virzi, 2006
- Efficiency includes *b*-tagging and kinematic acceptance.
- Simple analysis, ignore large boost of tops.
- 3-TeV KK gluon ($\sqrt{s} = 14$ TeV):

(2,8,21) fb⁻¹ for $kr_c\pi = (7,21,35)$.

• Good agreement with ABKPV results for $kr_c\pi = 35$.

A Light Radion

H.D., T. McElmurry, A. Soni, work in progress

- Typically, $m_{\phi} \ll m_{KK}$, assume $m_{\phi} \lesssim 140$ GeV.
- $gg \rightarrow \phi \rightarrow \gamma \gamma$ important.
- ϕgg , $\phi \gamma \gamma$ couplings depend on $1/(kr_c\pi)$:

Enhanced in LRS ($kr_c\pi \ll 35$) for fixed gravity scale Λ_{ϕ} .

 \Rightarrow Little radion may be interesting for the $\sqrt{s} = 7$ TeV LHC run.

• $q\bar{q} \to W^*/Z^* \to W/Z \phi$:

Leading W/Z coupling $\propto 1/\Lambda_{\phi}$ only \Rightarrow measure $\Lambda_{\phi} \Rightarrow$ extract $kr_c\pi$.

Infer bulk volume (CFT: "Conformal Depth").

Concluding Remarks

- RS background an interesting framework for flavor.
- Volume-truncated LRS as a model of <u>flavor</u>:
 - The fundamental scale $M_5 \gg \text{TeV}$ can be much lower than \bar{M}_P .
 - Some constraints can be alleviated by volume truncation.
 - LRS still addresses Higgs- M_5 hierarchies \rightarrow TeV-scale KK modes.
- Some clean LRS signals quite sensitive to the hierarchy (UV scale).
 - Simple models: $kr_c\pi$ (M_5) may be inferred from weak scale data.
 - 4D CFT dual: UV conformal depth.