# Performance of $E_T^{miss}$ reconstruction in first ATLAS data

Elisabeth Petit (CPPM/IN2P3–Univ. de la Méditerranée)

on behalf of ATLAS collaboration



Pheno10 symposium

Collider signature 1 session

Madison, Wisconsin 10<sup>th</sup>-12<sup>th</sup> May 2010



#### • New physics

- SUSY
- Heavy gauge bosons
- Extradimensions



# Standard candles from standard model

- W bosons
- top quark
- $Z \rightarrow \tau \tau$



vo

W

b

 $\tilde{\chi_1^0}$ 

q

W

h

υ

ĝ

ĝ

р

Pheno10 - Missing  $E_T$  in ATLAS

# **ATLAS** detector



|             | Inner detector, $ \eta  < 2.5$ |       |       |   | Calorimeter system,  n  < 4.9 |         |          | Muon spectrometer,  ŋ  < 2.7 |       |       |       |       |
|-------------|--------------------------------|-------|-------|---|-------------------------------|---------|----------|------------------------------|-------|-------|-------|-------|
|             | Pixel                          | SCT   | TRT   |   | LAr EM                        | LAr HEC | LAr FCal | Tile                         | MDT   | CSC   | RPC   | TGC   |
| # channels  | 80 M                           | 6.3 M | 350 k |   | 170 k                         | 5,6 k   | 3,5 k    | 9,8 k                        | 350 k | 31 k  | 370 k | 320 k |
| operational | 97,5%                          | 99,3% | 98,0% | ] | 98,5%                         | 99,9%   | 100,0%   | 97,3%                        | 99,7% | 98,5% | 97,3% | 98,8% |

 $\rightarrow$  All ATLAS detector operational to measure  $E_T^{miss}$ 

05/11/10

### E<sup>miss</sup> reconstruction

- Missing transverse energy:  $\mathbf{E}_{T}^{\text{miss}} = \sqrt{E_{X}^{\text{miss}^{2}} + E_{Y}^{\text{miss}^{2}}}$ 
  - opposite of vectorial transverse energy sum projected on x, y-axis:  $\mathbf{E}_{\mathbf{X},\mathbf{Y}}^{\text{miss}}$
  - scalar sum of transverse energy:  $\Sigma E_{T}$
- 3 reconstruction schemes:
  - Calorimeter-based default in this talk
    - Noise suppression with topoclusters
  - Object-based
  - Track-based
  - + muons and dead zones

• Missing transverse energy from commissioning data 2009/2010:

- All plots at EM scale
- Random events:
- Minimum bias events:

$$< E_X^{\text{miss}} > = < E_Y^{\text{miss}} > = 0, < \Sigma E_T > = 0$$

$$< E_X^{\text{miss}} > = < E_Y^{\text{miss}} > = 0, \Sigma E_T^{\text{in}} \text{ in } [0;100] \text{ GeV}$$

Pheno10 - Missing  $E_T$  in ATLAS

05/11/10

# Randomly triggered events

♦ No energy deposit



Thanks to noise rejection, no contribution to resolution for physics

Pheno10 - Missing  $E_T$  in ATLAS

### Collision events: cell level response



Fair agreement data-MC in all calorimeter subdetectors

### Calorimeter-based $E_{\tau}^{miss}$ (1)

• Energy deposits in the calorimeters



♦ Resolution plot



Resolution of  $\sigma(E_{X,Y}^{\text{miss}}) = 0.37*\sqrt{\Sigma E_T}$ 

# Calorimeter-based $E_{\tau}^{miss}$ (3)

√s = 900 GeV √s = 2.36 TeV Events / 1 GeV 104 Events / 1 GeV 0<sup>4</sup> ATLAS Preliminary ATLAS Preliminary  $\mathsf{E}_{\mathsf{T}}^{\mathsf{miss}}$ √s=900 GeV ∖s=2.36 TeV **0**<sup>3</sup> Data Data MC MinBias MC MinBias 10<sup>3</sup> 10<sup>2</sup> 10<sup>2</sup> 10 10 35 40 E<sup>miss</sup> [GeV] 10 30 35 40 E<sup>miss</sup> [GeV] ō 25 20 25 5 10 15 20 30 40 0 15 5 √s = 7 TeV Events / 1 GeV 10<sup>4</sup> ATLAS Preliminarv √s = 7 TeV →Good agreement data/MC Data  $\rightarrow$  No high  $E_{T}^{miss}$  tails MC MinBias 10<sup>3</sup> Promising for physics with real  $E_{T}^{miss}$ 10<sup>2</sup> 10 1 0 45 50 E<sub>T</sub><sup>miss</sup> [GeV] 30 35 50 0 25 40 5 20 10 15

40

### **Time stability**

• Mean (<>) and width ( $\sigma$ ) of  $E_x^{miss}$ :



Very good stability of previous results

#### √s = 900 GeV

### Towards object-based $E_{\tau}^{miss}$

#### √s = 900 GeV

Jets:AntiKt algorithm (R = 0.6)



Deposits of energy not associated to reconstructed objects:



→Good agreement data/MC

### Track-based $E_{\tau}^{miss}$

√s = 900 GeV

#### • Reconstructed tracks in the Inner detector



→ Good agreement data/MC → Resolution of  $\sigma(E_{X,Y}^{miss}) = 0.72*\sqrt{\Sigma E_T}$ 

- ♦ 600k of 900 GeV, 20k of 2.36 TeV and 7M of 7 TeV Minimum Bias events recorded in November-December 2009 and April 2010
- Calorimeter-based  $E_T^{miss}$  at EM scale well understood
  - very good agreement data/MC
  - resolution:  $\sigma(E_{X,Y}^{miss}) = 0.37*\sqrt{\Sigma E_T}$
  - Good stability with time
- First steps towards object-based and track-based  $E_T^{miss}$
- Very encouraging for physics with real  $E_T^{miss}$

# Outlook



# **Back-up**

### **Electronic noise**

LAr





## **Topological clustering**

- Input to Calorimeter- $E_T^{miss}$  reconstruction: 4/2/0 topoclusters
- ♦ 3-dimensional group of calorimeter cells:
  - seed cells with  $|E_{cell}| > 4*\sigma_{noise}$
  - iteratively add neighbours with  $|E_{cell}| > 2*\sigma_{noise}$
  - add perimeter cells with  $|E_{cell}| > 0*\sigma_{noise}$





η

### Calorimeter-based $E_{\tau}^{miss}$ (4)

• Energy deposits in the calorimeters

