Early Z' Searches at the LHC

Seth Quackenbush

Argonne National Lab

Outline

- Motivation
- Signal
- Search reach
- Model parametrization
- Exclusion
- Future

Looking for a Z'

- A dilepton resonance is a clean signal, and a perfect place to look for new physics
- It could be a lot of things (experiments need to know what to look for)
- We (theorists and experimenters) need to know what can be found, what's ruled out, and if we find something, what it is
- This isn't a talk about favorite models-I don't have one
- Goal: get an idea where we'll be after first LHC run

Where to look

- Tevatron looked for resonances in electrons, muons, and jets (typical model hypotheses ruled out 500-1000 GeV)
- Z' is neutral, make with $q \bar{q}$
- Penalty for antiquark at LHC; suppresses Z', not QCD (no searching for dijets)
- That leaves dileptons (will discuss electrons, muons)

Mind your e's and μ 's

- Both great search channels (great resolution, clean)
- Look for generation-dependent models
- Most models still generation-independent; check sanity

Mind your e's and μ 's

- Both great search channels (great resolution, clean)
- Look for generation-dependent models
- Most models still generation-independent; check sanity

Mind your e's and μ 's

- Both great search channels (great resolution, clean)
- Look for generation-dependent models
- Most models still generation-independent; check sanity

$1 \sigma ?$

Mind your e's and μ^{\prime} 's

- Both great search channels (great resolution, clean)
- Look for generation-dependent models
- Most models still generation-independent; check sanity

Search Reaches

- Usual benchmarks can be discovered in first few $100 \mathrm{pb}^{-1}$ through more than 1 TeV (past Tevatron)
- Searches shape dependent—narrow width models show up early, large width degenerates into counting experiment

Search Reaches

CMS, 7 TeV

- Usual benchmarks can be discovered in first few $100 \mathrm{pb}^{-1}$ through more than 1 TeV (past Tevatron)
- Searches shape dependent-narrow width models show up early, large width degenerates into counting experiment

Assumptions, assumptions

- Want a measure of LHC capabilities without too many assumptions
- There are more models on heaven and earth...
- Even usual benchmarks (E_{6} GUTs) have free parameters, like overall coupling (or mixing between multiple U(1))
- There are lots of other models, some even motivated to be at LHC scale (Little Higgs, RS)
- Generic model will require new exotic fermionsinvisible decays, affects leptonic branching fraction

Parametrize models

- Z' peak cross section goes like (spin 1 case)

$$
\frac{d \sigma}{d Y}=\sum_{q=u, d} a_{1}^{q} c_{q}
$$

$c_{q}=\frac{M_{Z^{\prime}}}{24 \pi \Gamma_{Z^{\prime}}}\left(q_{R}^{2}+q_{L}^{2}\right)\left(e_{R}^{2}+e_{L}^{2}\right)=\left(q_{R}^{2}+q_{L}^{2}\right) \operatorname{Br}\left(Z^{\prime} \rightarrow l l\right) \quad$ Carena et al.
Even interference terms negligible for early searches

- Coefficients only depend on mass, PDFs, cuts
- Invert data to bound coupling combination
- Works for almost every model

3 Events

- Basically zero DY background if you go far enough in invariant mass
- If 3 events expected, fluctuates to zero 5% of the time
- 95\% exclusion if your model predicts 3 or more events in a bin
- Robust against bin size (and thus model assumptions), just pick large enough bins to contain anything you would call a Z'
- I picked 10% of mass as a demonstration

Start excluding parameter space

- Typical models somewhat improved over Tevatron at 7 TeV for first $100 \mathrm{pb}^{-1}$, large improvement at $1 \mathrm{fb}^{-1}$
- Large masses with reasonable couplings completely inaccessible by Tevatron

The future

Li, Petriello, SQ

- Measure couplings! Let's figure out what that resonance is! (Need lots more data)

Summary

- A Z' is more than a signal if it exists
- Even 7 TeV LHC will extend our knowledge significantly
- Model-independent bounds are ideal
- We will need more time to figure out what it is, but it will happen

Tevatron circa 2011

