Andriy Badin, Wayne State University

Dark Matter production in heavy meson decays

Based on work done in collaboration with Alexey Petrov [arXiv:1005.1277]

Outline

- General idea
- Formalism
- SM background
- Scalar Dark Matter production
- Fermion Dark Matter production
- Conclusion

General Idea

- Missing energy decays of heavy mesons. Are they due to neutrino or DM?
- Some data for missing energy decays is not available. Our results provide motivation for these studies.
- Compare results for DM production with current experimental bounds and try to ruleout the light DM

Theory

• Experiment

- Theory $\mathcal{B}(B_s \to \nu \overline{\nu}) \simeq 3.07 \times 10^{-24}$ $\mathcal{B}(B_d \to \nu \overline{\nu}) \simeq 1.24 \times 10^{-25}$ $\mathcal{B}(D^0 \to \nu \overline{\nu}) \simeq 1.1 \times 10^{-30}$
- Experiment

- Theory $\mathcal{B}(B_s \to \nu \overline{\nu}) \simeq 3.07 \times 10^{-24}$ $\mathcal{B}(B_d \to \nu \overline{\nu}) \simeq 1.24 \times 10^{-25}$ $\mathcal{B}(D^0 \to \nu \overline{\nu}) \simeq 1.1 \times 10^{-30}$
- Experiment NO DATA $< 2.2 \times 10^{-4}$ [1] NO DATA

[1] B. Aubert et al., Phys.Rev.Lett.93:091802,2004. [arXiv: hep-ex/0405071]

- Theory $\mathcal{B}(B_s \to \nu \overline{\nu}) \simeq 3.07 \times 10^{-24}$ $\mathcal{B}(B_d \to \nu \overline{\nu}) \simeq 1.24 \times 10^{-25}$ $\mathcal{B}(D^0 \to \nu \overline{\nu}) \simeq 1.1 \times 10^{-30}$
- Experiment NO DATA $< 2.2 \times 10^{-4}$ [1] NO DATA

 $\mathcal{B}(B_s \to \nu \bar{\nu} \gamma) \simeq 3.7 \times 10^{-8}$ $\mathcal{B}(B_d \to \nu \bar{\nu} \gamma) \simeq 1.9 \times 10^{-9}$ $\mathcal{B}(D^0 \to \nu \bar{\nu} \gamma) \simeq 3.9 \times 10^{-14}$

[1] B. Aubert et al., Phys.Rev.Lett.93:091802,2004. [arXiv: hep-ex/0405071]

- Theory $\mathcal{B}(B_s \to \nu \overline{\nu}) \simeq 3.07 \times 10^{-24}$ $\mathcal{B}(B_d \to \nu \overline{\nu}) \simeq 1.24 \times 10^{-25}$ $\mathcal{B}(D^0 \to \nu \overline{\nu}) \simeq 1.1 \times 10^{-30}$
- Experiment NO DATA $< 2.2 \times 10^{-4}$ [1] NO DATA

 $\mathcal{B}(B_s \to \nu \bar{\nu} \gamma) \simeq 3.7 \times 10^{-8}$ $\mathcal{B}(B_d \to \nu \bar{\nu} \gamma) \simeq 1.9 \times 10^{-9}$ $\mathcal{B}(D^0 \to \nu \bar{\nu} \gamma) \simeq 3.9 \times 10^{-14}$

NO DATA $< 4.7 \times 10^{-5}$ [1] NO DATA

[1] B. Aubert et al., Phys.Rev.Lett.93:091802,2004. [arXiv: hep-ex/0405071]

Formalism $B_q \to \chi \chi \text{ decays}$

 $\begin{array}{rcl} \langle 0 \mid \overline{b}\gamma^{\mu}q \mid B_{q} \rangle &=& \langle 0 \mid \overline{b}q \mid B_{q} \rangle = 0, \\ \langle 0 \mid \overline{b}\gamma^{\mu}\gamma_{5}q \mid B_{q} \rangle &=& if_{B_{q}}P^{\mu} \\ \langle 0 \mid \overline{b}\gamma_{5}q \mid B_{q} \rangle &=& -i\frac{f_{B_{q}}M_{B_{q}}^{2}}{m_{b}+m_{q}}. \end{array}$

$$B_{q} \rightarrow \chi \ \chi \ \gamma \text{decays}$$

$$\langle \gamma(k) | \overline{b} \gamma_{\mu} q | B_{q}(k+q) \rangle = e \ \epsilon_{\mu\nu\rho\sigma} \epsilon^{*\nu} q^{\rho} k^{\sigma} \frac{f_{V}^{B}(q^{2})}{M},$$

$$\langle \gamma(k) | \overline{b} \gamma_{\mu} \gamma_{5} q | B_{q}(k+q) \rangle = -ie \left[\epsilon_{\mu}^{*} (kq) - (\epsilon^{*}q) k_{\mu} \right] \frac{f_{A}^{B}(q^{2})}{M}$$

$$\langle \gamma(k) | \overline{b} \sigma_{\mu\nu} q | B_q(k+q) \rangle = \frac{e}{M^2} \epsilon_{\mu\nu\lambda\sigma} \left[G \epsilon^{*\lambda} k^{\sigma} + H \epsilon^{*\lambda} q^{\sigma} + N(\epsilon^* q) q^{\lambda} k^{\sigma} \right]$$

$$B_{q} \rightarrow \chi \ \chi \ \gamma \text{decays}$$

$$\langle \gamma(k) | \overline{b} \gamma_{\mu} q | B_{q}(k+q) \rangle = e \ \epsilon_{\mu\nu\rho\sigma} \epsilon^{*\nu} q^{\rho} k^{\sigma} \frac{f_{V}^{B}(q^{2})}{M},$$

$$\langle \gamma(k) | \overline{b} \gamma_{\mu} \gamma_{5} q | B_{q}(k+q) \rangle = -ie \left[\epsilon_{\mu}^{*} (kq) - (\epsilon^{*}q) k_{\mu} \right] \frac{f_{A}^{B}(q^{2})}{M}$$

$$\langle \gamma(k) | \overline{b} \sigma_{\mu\nu} q | B_{q}(k+q) \rangle = \frac{e}{M^{2}} \epsilon_{\mu\nu\lambda\sigma} \left[G \epsilon^{*\lambda} k^{\sigma} + H \epsilon^{*\lambda} q^{\sigma} + N(\epsilon^{*}q) q^{\lambda} k^{\sigma} \right]$$

 $f_{V}^{B}(E_{\gamma}) = f_{A}^{B}(E_{\gamma}) = \frac{f_{B_{q}}M_{B_{q}}}{2E_{\gamma}} \left(-Q_{q}R_{q} + \frac{Q_{b}}{m_{b}}\right) + \mathcal{O}\left(\frac{\Lambda_{QCD}^{2}}{E_{\gamma}^{2}}\right) \equiv \frac{f_{B_{q}}M_{B_{q}}}{2E_{\gamma}}F_{B_{q}},$ where $R_{q}^{-1} \sim M_{B_{q}} - m_{b}$, and $F_{B_{q}} = -Q_{q}R_{q} + \frac{Q_{b}}{m_{b}} \sim \frac{M_{B_{q}}Q_{b} - m_{b}(Q_{b} + Q_{q})}{m_{b}(M_{B_{q}} - m_{b})}.$

$$B_{q} \rightarrow \chi \ \chi \ \gamma \text{decays}$$

$$\langle \gamma(k) | \overline{b} \gamma_{\mu} q | B_{q}(k+q) \rangle = e \ \epsilon_{\mu\nu\rho\sigma} \epsilon^{*\nu} q^{\rho} k^{\sigma} \frac{f_{V}^{B}(q^{2})}{M},$$

$$\langle \gamma(k) | \overline{b} \gamma_{\mu} \gamma_{5} q | B_{q}(k+q) \rangle = -ie \left[\epsilon_{\mu}^{*}(kq) - (\epsilon^{*}q) k_{\mu} \right] \frac{f_{A}^{B}(q^{2})}{M}$$

$$\langle \gamma(k) | \overline{b} \sigma_{\mu\nu} q | B_{q}(k+q) \rangle = \frac{e}{M^{2}} \epsilon_{\mu\nu\lambda\sigma} \left[G \epsilon^{*\lambda} k^{\sigma} + H \epsilon^{*\lambda} q^{\sigma} + N(\epsilon^{*}q) q^{\lambda} k^{\sigma} \right]$$

$$G = 4g_{1}; \qquad N = \frac{-4}{q^{2}} (f_{1} + g_{1})$$

$$H = \frac{-4(qk)}{q^{2}} (f_{1} + g_{1}); \qquad f_{1}(g_{1}) = \frac{f_{0}(g_{0})}{(1 - q^{2}/\mu_{f(g)}^{2})^{2}}$$

Various DM scenario

$$\mathcal{H}_{eff}^{(s)} = 2\sum_{i} \frac{C_{i}^{(s)}}{\Lambda^{2}}O_{i}$$

- Scalar DM allows to avoid Lee-Weinberg bound.
- Fermion DM (Dirac or Majorana)
- Vector DM. Don't know about any model with spin=1 DM but provide results for generality

1. A. P.M.

$$O_{1} = m_{b}(\overline{b}_{R}q_{L})(\chi_{0}^{*}\chi_{0}),$$

$$O_{2} = m_{b}(\overline{b}_{L}q_{R})(\chi_{0}^{*}\chi_{0}),$$

$$O_{3} = (\overline{b}_{L}\gamma^{\mu}q_{L})(\chi_{0}^{*}\overleftrightarrow{\partial}_{\mu}\chi_{0}),$$

$$O_{4} = (\overline{b}_{R}\gamma^{\mu}q_{R})(\chi_{0}^{*}\overleftrightarrow{\partial}_{\mu}\chi_{0}),$$

$$O_{1} = m_{b}(\overline{b}_{R}q_{L})(\chi_{0}^{*}\chi_{0}),$$

$$O_{2} = m_{b}(\overline{b}_{L}q_{R})(\chi_{0}^{*}\chi_{0}),$$

$$O_{3} = (\overline{b}_{L}\gamma^{\mu}q_{L})(\chi_{0}^{*}\overleftrightarrow{\partial}_{\mu}\chi_{0}),$$

$$O_{4} = (\overline{b}_{R}\gamma^{\mu}q_{R})(\chi_{0}^{*}\overleftrightarrow{\partial}_{\mu}\chi_{0}),$$

Most likely there is NO radiative decay.

 $\left(\frac{C_1^{(s)} - C_2^{(s)}}{\Lambda^2}\right)^2$

$$\leq 2.03 \times 10^{-16} \ GeV^{-4} \ \text{for} \ m_{\chi} = 0$$

$$\leq 2.07 \times 10^{-16} \ GeV^{-4} \ \text{for} \ m_{\chi} = 0.1 \times M_{B_d}$$

$$\leq 2.22 \times 10^{-16} \ GeV^{-4} \ \text{for} \ m_{\chi} = 0.2 \times M_{B_d}$$

$$\leq 2.54 \times 10^{-16} \ GeV^{-4} \ \text{for} \ m_{\chi} = 0.3 \times M_{B_d}$$

$$\leq 3.39 \times 10^{-16} \ GeV^{-4} \ \text{for} \ m_{\chi} = 0.4 \times M_{B_d}$$

$$\frac{C_3^{(s)}}{\Lambda^2} \frac{C_4^{(s)}}{\Lambda^2} \le 1.70 \times 10^{-11} \ GeV^{-4} \ \text{for } m = 0$$

$$\frac{C_3^{(s)}}{\Lambda^2} \frac{C_4^{(s)}}{\Lambda^2} \le 2.03 \times 10^{-11} \ GeV^{-4} \ \text{for } m = 0.1 \times M_{B_d}$$

$$\frac{C_3^{(s)}}{\Lambda^2} \frac{C_4^{(s)}}{\Lambda^2} \le 3.49 \times 10^{-11} \ GeV^{-4} \ \text{for } m = 0.2 \times M_{B_d}$$

$$\frac{C_3^{(s)}}{\Lambda^2} \frac{C_4^{(s)}}{\Lambda^2} \le 9.88 \times 10^{-11} \ GeV^{-4} \ \text{for } m = 0.3 \times M_{B_d}$$

$$\frac{C_3^{(s)}}{\Lambda^2} \frac{C_4^{(s)}}{\Lambda^2} \le 8.11 \times 10^{-10} \ GeV^{-4} \ \text{for } m = 0.3 \times M_{B_d}$$

Examples of Scalar DM

 $\begin{aligned} \text{Minimal Scalar DM model [1]} \\ -\mathcal{L}_S &= \frac{\lambda_S}{4} S^4 + \frac{m_0^2}{2} S^2 + \lambda S^2 H^{\dagger} H \\ &= \frac{\lambda_S}{4} S^4 + \frac{1}{2} (m_0^2 + \lambda v_{EW}^2) S^2 + \lambda v_{EW} S^2 h + \frac{\lambda}{2} S^2 h^2 \end{aligned}$

$$C_{1,3,4}^{(s)} = 0, \ C_2^{(s)} = 3\lambda g_w^2 V_{ts} V_{tb}^* x_t / 256\pi^2, \ \text{and} \ \Lambda = M_H$$

$$5.94 \times 10^6 \left(\frac{\lambda}{M_H^2}\right)^2 \sqrt{1 - 4x_S^2} \le 1$$

[1] C.P. Burges, M. Pospelov and T. ter Veldhuis, Nucl. Phys. B619, 709 (2001);

Fermionic DM $\mathcal{H}_{eff}^{(\chi_{1/2})} = \frac{4}{\Lambda^2} \sum_i C_i Q_i$

$$\begin{aligned} Q_{1} &= (\bar{b}_{L}\gamma_{\mu}s_{L})(\overline{\chi}_{1/2}{}_{L}\gamma^{\mu}\chi_{1/2}{}_{L}) & Q_{2} &= (\bar{b}_{L}\gamma_{\mu}s_{L})\overline{\chi}_{1/2}{}_{R}\gamma^{\mu}\chi_{1/2}{}_{R}) \\ Q_{3} &= (\bar{b}_{R}\gamma_{\mu}s_{R})(\overline{\chi}_{1/2}{}_{L}\gamma^{\mu}\chi_{1/2}{}_{L}) & Q_{4} &= (\bar{b}_{R}\gamma_{\mu}s_{R})(\overline{\chi}_{1/2}{}_{R}\gamma^{\mu}\chi_{1/2}{}_{R}) \\ Q_{5} &= (\bar{b}_{L}s_{R})(\overline{\chi}_{1/2}{}_{L}\chi_{1/2}{}_{R}) & Q_{6} &= (\bar{b}_{L}s_{R})(\overline{\chi}_{1/2}{}_{R}\chi_{1/2}{}_{L}) \\ Q_{7} &= (\bar{b}_{R}s_{L})(\overline{\chi}_{1/2}{}_{L}\chi_{1/2}{}_{R}) & Q_{8} &= (\bar{b}_{R}s_{L})(\overline{\chi}_{1/2}{}_{R}\chi_{1/2}{}_{L}) \\ Q_{9} &= (\bar{b}_{L}\sigma_{\mu\nu}s_{R})(\overline{\chi}_{1/2}{}_{L}\sigma^{\mu\nu}\chi_{1/2}{}_{R}) & Q_{10} &= (\bar{b}_{L}\sigma_{\mu\nu}s_{R})(\overline{\chi}_{1/2}{}_{R}\sigma^{\mu\nu}\chi_{1/2}{}_{L}) \\ Q_{11} &= (\bar{b}_{R}\sigma_{\mu\nu}s_{L})(\overline{\chi}_{1/2}{}_{L}\sigma^{\mu\nu}\chi_{1/2}{}_{R}) & Q_{12} &= (\bar{b}_{R}\sigma_{\mu\nu}s_{L})(\overline{\chi}_{1/2}{}_{R}\sigma^{\mu\nu}\chi_{1/2}{}_{L}) \end{aligned}$$

$$C_{1} = \frac{Hidden Valleys_{[1]}}{2g\sqrt{2}\sin^{2}\theta_{W}}V_{tb}V_{ts}^{*}X(x) \text{ and } \Lambda = M_{Z'}$$

Black, red and green correspond to $g_1 k = 1$, 0.1 and 10 respectively

[1] M. J. Strassler and K. M. Zurek, Phys. Lett. B 651, 374 (2007)

J.-M. Frére et al.[arxiv:hep-ph/0610240v2]

$$\begin{split} & \textbf{Majorana Fermions DM}_{[1]} \\ & \bar{\chi}\gamma_{\mu}\chi = 0 \qquad \bar{\chi}\sigma^{\mu\nu}\chi = 0 \\ -\mathcal{L}_{f} &= \frac{M}{2}\bar{\psi}\psi + \mu\bar{H}_{d}\tilde{H}_{u} + \lambda_{d}\bar{\psi}\tilde{H}_{d}H_{d} + \lambda_{u}\bar{\psi}\tilde{H}_{u}H_{u} \\ & \chi &= -\psi\cos\theta + \tilde{H}_{d}\sin\theta \quad \sin^{2}\theta = \frac{\lambda_{u}^{2}v_{u}^{2}}{\lambda_{u}^{2}v_{u}^{2} + \mu^{2}} \\ & m_{1} &= M\left(1 - \frac{\lambda_{u}^{2}v_{u}^{2}}{\lambda_{u}^{2}v_{u}^{2} + \mu^{2}}\right) \\ & \mathcal{C}_{5} = C_{6} &= \frac{V_{ts}V_{tb}^{*}\tan b}{(16\pi)^{2}v_{sm}^{3}}\left(\frac{\lambda_{d}\lambda_{u}v_{u}\mu}{\lambda_{u}^{2}v_{u}^{2} + \mu^{2}}\right) \frac{m_{b}m_{t}^{2}\ln a_{t}}{(1 - a_{t})} \text{ and } \Lambda = M_{h} \end{split}$$

[1] C. Bird, R. Kowalewski and M. Pospelov, Mod. Phys. Lett. A 21, 457 (2006)

Vector DM

 $O_{1} = m_{b}(\overline{b}_{L}q_{R})V_{\mu}V^{\mu}, \qquad O_{4} = (\overline{b}_{R}\gamma_{\mu}q_{R})V^{\mu\nu}V_{\nu},$ $O_{2} = m_{b}(\overline{b}_{R}q_{L})V_{\mu}V^{\mu}, \qquad O_{5} = (\overline{b}_{L}\gamma_{\mu}q_{L})\widetilde{V}^{\mu\nu}V_{\nu},$ $O_{3} = (\overline{b}_{L}\gamma_{\mu}q_{L})V^{\mu\nu}V_{\nu}, \qquad O_{6} = (\overline{b}_{R}\gamma_{\mu}q_{R})\widetilde{V}^{\mu\nu}V_{\nu},$

where $\widetilde{V}^{\mu\nu} = (1/2)\epsilon^{\mu\nu\alpha\beta}V_{\alpha\beta}$ and q = s, d

$x_{oldsymbol{\chi}}$	$C_1/\Lambda^2,$	$C_2/\Lambda^2,$	$C_3/\Lambda^2,$	$C_4/\Lambda^2,$	$C_5/\Lambda^2,$	$C_6/\Lambda^2,$
	${ m GeV}^{-2}$					
0	0	0	$1.4 imes 10^{-8}$	$1.4 imes 10^{-8}$	$8.9 imes10^{-9}$	$8.9 imes10^{-9}$
0.1	$1.2 imes 10^{-9}$	$1.2 imes 10^{-9}$	$1.5 imes10^{-8}$	$1.5 imes10^{-8}$	$9.1 imes10^{-9}$	$9.1 imes10^{-9}$
0.2	$5.1 imes 10^{-9}$	$5.1 imes 10^{-9}$	$1.5 imes10^{-8}$	$1.5 imes 10^{-8}$	$1.0 imes10^{-8}$	$1.0 imes10^{-8}$
0.3	$1.3 imes10^{-8}$	$1.3 imes10^{-8}$	$1.6 imes10^{-8}$	$1.6 imes10^{-8}$	$1.2 imes 10^{-8}$	$1.2 imes 10^{-8}$
0.4	$2.9 imes 10^{-8}$	$2.9 imes 10^{-8}$	$1.9 imes 10^{-8}$	$1.9 imes 10^{-8}$	$1.9 imes 10^{-8}$	$1.9 imes 10^{-8}$

Table 1: Constraints (upper limits) on the Wilson coefficients of operators from the $B_q \rightarrow \chi_1 \chi_1$ transition.

Summary

- Considered possibility of DM production in heavy meson decays
- Demonstrated that it is possible to constrain DM properties
- Motivation for experimental studies of missing energy decays
- Light Dark Matter can be potentially ruled out

BACKUP

1. A.M. M.

27/1

Fermionic DM general limits

 $C_{57}^2 + C_{68}^2 \leq 5.15 \times 10^{-16}$ $0.02(C_{13} + C_{24})^2 - 0.23\tilde{C}_{1-8} + 1.32(C_{57}^2 + C_{68}^2) + 0.05C_{57}C_{68} \leq 7.09 \times 10^{-16}$ $0.08(C_{13} + C_{24})^2 - 0.46\tilde{C}_{1-8} + 1.24(C_{57}^2 + C_{68}^2) + 0.22C_{57}C_{68} \leq 7.58 \times 10^{-16}$ $0.18(C_{13} + C_{24})^2 - 0.69\tilde{C}_{1-8} + 1.10(C_{57}^2 + C_{68}^2) + 0.48C_{57}C_{68} \leq 8.66 \times 10^{-16}$ $0.32(C_{13} + C_{24})^2 - 0.93\tilde{C}_{1-8} + 0.92(C_{57}^2 + C_{68}^2) + 0.86C_{57}C_{68} \leq 1.15 \times 10^{-15}$

 $C_{ij} \equiv C_i - C_j$ $\tilde{C}_{1-8} \equiv C_{13}C_{57} + C_{24}C_{57} + C_{13}C_{68} + C_{24}C_{68}$

Fermionic DM upper bounds on Wilson coefficients

x_{χ}	$C_1/\Lambda^2,\ { m GeV}^{-2}$	$C_2/\Lambda^2,\ { m GeV}^{-2}$	$C_3/\Lambda^2,\ { m GeV}^{-2}$	$C_4/\Lambda^2,\ { m GeV}^{-2}$	$C_5/\Lambda^2,\ { m GeV}^{-2}$	$C_6/\Lambda^2,\ { m GeV}^{-2}$	$C_7/\Lambda^2,\ { m GeV}^{-2}$	$C_8 \ { m GeV}$
0	-	- II	- 1	-	$2.3 imes 10^{-8}$	$2.3 imes10^{-8}$	$2.3 imes10^{-8}$	2.3 imes
0.1	$1.9 imes10^{-7}$	$1.9 imes10^{-7}$	$1.9 imes10^{-7}$	$1.9 imes10^{-7}$	$2.3 imes10^{-8}$	$2.3 imes10^{-8}$	$2.3 imes10^{-8}$	2.3 imes
0.2	$9.7 imes10^{-8}$	$9.7 imes10^{-8}$	$9.7 imes10^{-8}$	$9.7 imes10^{-8}$	$2.5 imes10^{-8}$	$2.5 imes10^{-8}$	$2.5 imes10^{-8}$	2.5 imes
0.3	$6.9 imes10^{-8}$	$6.9 imes10^{-8}$	$6.9 imes10^{-8}$	$6.9 imes10^{-8}$	$2.8 imes10^{-8}$	$2.8 imes10^{-8}$	$2.8 imes10^{-8}$	2.8 imes
0.4	$6.0 imes10^{-8}$	$6.0 imes10^{-8}$	$6.0 imes10^{-8}$	$6.0 imes10^{-8}$	$3.6 imes10^{-8}$	$3.6 imes10^{-8}$	$3.6 imes10^{-8}$	3.6 imes

Table 1: Constraints (upper limits) on the Wilson coefficients of operators the $B_q \rightarrow \chi_{1/2} \overline{\chi}_{1/2}$ transition. Note that operators $Q_9 - Q_{12}$ give no contribution to this decay.

x_{χ}	$C_1/\Lambda^2,~{ m GeV}^{-2}$	$C_2/\Lambda^2,~{ m GeV}^{-2}$	$C_3/\Lambda^2,~{ m GeV}^{-2}$	$C_4/\Lambda^2,~{ m GeV}^{-2}$
0	$6.3 imes10^{-7}$	$6.3 imes10^{-7}$	$6.3 imes10^{-7}$	$6.3 imes10^{-7}$
0.1	$7.0 imes10^{-7}$	$7.0 imes10^{-7}$	$7.0 imes10^{-7}$	$7.0 imes10^{-7}$
0.2	$9.2 imes10^{-7}$	$9.2 imes10^{-7}$	$9.2 imes10^{-7}$	$9.2 imes10^{-7}$
0.3	$1.5 imes10^{-6}$	$1.5 imes10^{-6}$	$1.5 imes10^{-6}$	$1.5 imes10^{-6}$
0.4	$3.4 imes10^{-6}$	$3.4 imes10^{-6}$	$3.4 imes10^{-6}$	$3.4 imes10^{-6}$

Table 2: Constraints (upper limits) on the Wilson coefficients of operators from the $B_q \rightarrow \chi_{1/2} \overline{\chi}_{1/2} \gamma$ transition. Note that operators $Q_5 - Q_8$ give no contribution to this decay. Andriy Badin, Wayne State University

All Maria

Dark Matter production in heavy meson decays

Based on work done in collaboration with Alexey Petrov [arXiv:1005.1277]

$$\begin{split} B_{q} &\rightarrow \chi \, \chi \, \gamma \text{decays} \\ \langle \gamma(k) | \overline{b} \gamma_{\mu} q | B_{q}(k+q) \rangle &= e \, \epsilon_{\mu\nu\rho\sigma} \epsilon^{*\nu} q^{\rho} k^{\sigma} \frac{f_{V}^{B}(q^{2})}{M}, \\ \langle \gamma(k) | \overline{b} \gamma_{\mu} \gamma_{5} q | B_{q}(k+q) \rangle &= -ie \left[\epsilon_{\mu}^{*} (kq) - (\epsilon^{*}q) \, k_{\mu} \right] \frac{f_{A}^{B}(q^{2})}{M} \\ \langle \gamma(k) | \overline{b} \sigma_{\mu\nu} q | B_{q}(k+q) \rangle &= \frac{e}{M^{2}} \epsilon_{\mu\nu\lambda\sigma} \left[G \epsilon^{*\lambda} k^{\sigma} + H \epsilon^{*\lambda} q^{\sigma} + N(\epsilon^{*}q) q^{\lambda} k^{\sigma} \right] \end{split}$$

$$\begin{split} B_{q} &\rightarrow \chi \ \chi \ \gamma \text{decays} \\ \langle \gamma(k) | \overline{b} \gamma_{\mu} q | B_{q}(k+q) \rangle &= e \ \epsilon_{\mu\nu\rho\sigma} \epsilon^{*\nu} q^{\rho} k^{\sigma} \frac{f_{V}^{B}(q^{2})}{M}, \\ \langle \gamma(k) | \overline{b} \gamma_{\mu} \gamma_{5} q | B_{q}(k+q) \rangle &= -ie \left[\epsilon_{\mu}^{*}(kq) - (\epsilon^{*}q) k_{\mu} \right] \frac{f_{A}^{B}(q^{2})}{M} \\ \langle \gamma(k) | \overline{b} \sigma_{\mu\nu} q | B_{q}(k+q) \rangle &= \frac{e}{M^{2}} \epsilon_{\mu\nu\lambda\sigma} \left[G \epsilon^{*\lambda} k^{\sigma} + H \epsilon^{*\lambda} q^{\sigma} + N(\epsilon^{*}q) q^{\lambda} k^{\sigma} \right] \\ f_{V}^{B}(E_{\gamma}) &= f_{A}^{B}(E_{\gamma}) = \frac{f_{Bq} M_{Bq}}{2E_{\gamma}} \left(-Q_{q} R_{q} + \frac{Q_{b}}{m_{b}} \right) + \mathcal{O} \left(\frac{\Lambda_{2}^{2} CD}{E_{\gamma}^{2}} \right) \equiv \frac{f_{Bq} M_{Bq}}{2E_{\gamma}} F_{Bq}, \\ \text{where } R_{q}^{-1} \sim M_{Bq} - m_{b}, \text{ and } F_{Bq} = -Q_{q} R_{q} + \frac{Q_{b}}{m_{b}} \sim \frac{M_{Bq} Q_{b} - m_{b}(Q_{b} + Q_{q})}{m_{b}(M_{Bq} - m_{b})}. \end{split}$$

$$\begin{split} B_{q} &\rightarrow \chi \ \chi \ \gamma \text{decays} \\ \langle \gamma(k) | \overline{b} \gamma_{\mu} q | B_{q}(k+q) \rangle &= e \ \epsilon_{\mu\nu\rho\sigma} \epsilon^{*\nu} q^{\rho} k^{\sigma} \frac{f_{V}^{B}(q^{2})}{M}, \\ \langle \gamma(k) | \overline{b} \gamma_{\mu} \gamma_{5} q | B_{q}(k+q) \rangle &= -ie \left[\epsilon_{\mu}^{*} (kq) - (\epsilon^{*}q) k_{\mu} \right] \frac{f_{A}^{B}(q^{2})}{M} \\ \langle \gamma(k) | \overline{b} \sigma_{\mu\nu} q | B_{q}(k+q) \rangle &= \frac{e}{M^{2}} \epsilon_{\mu\nu\lambda\sigma} \left[G \epsilon^{*\lambda} k^{\sigma} + H \epsilon^{*\lambda} q^{\sigma} + N(\epsilon^{*}q) q^{\lambda} k^{\sigma} \right] \\ G &= 4g_{1}; \qquad N = \frac{-4}{q^{2}} (f_{1} + g_{1}) \\ H &= \frac{-4(qk)}{q^{2}} (f_{1} + g_{1}); \qquad f_{1}(g_{1}) = \frac{f_{0}(g_{0})}{(1 - q^{2}/\mu_{f(g)}^{2})^{2}} \end{split}$$

A MARIAN CAL

$$\begin{array}{rcl} O_1 &=& m_b(\overline{b}_R q_L)(\chi_0^* \chi_0), \\ O_2 &=& m_b(\overline{b}_L q_R)(\chi_0^* \chi_0), \\ O_3 &=& (\overline{b}_L \gamma^\mu q_L)(\chi_0^* \stackrel{\leftrightarrow}{\partial}_\mu \chi_0), \\ O_4 &=& (\overline{b}_R \gamma^\mu q_R)(\chi_0^* \stackrel{\leftrightarrow}{\partial}_\mu \chi_0), \end{array}$$

Most likely there is NO radiative decay.

15

$$\begin{aligned} & \left(\frac{C_1^{(s)} - C_2^{(s)}}{\Lambda^2}\right)^2 &\leq 2.03 \times 10^{-16} \ GeV^{-4} \ \text{for} \ m_{\chi} = 0 \\ & \left(\frac{C_1^{(s)} - C_2^{(s)}}{\Lambda^2}\right)^2 &\leq 2.07 \times 10^{-16} \ GeV^{-4} \ \text{for} \ m_{\chi} = 0.1 \times M_{B_d} \\ & \left(\frac{C_1^{(s)} - C_2^{(s)}}{\Lambda^2}\right)^2 &\leq 2.22 \times 10^{-16} \ GeV^{-4} \ \text{for} \ m_{\chi} = 0.2 \times M_{B_d} \\ & \left(\frac{C_1^{(s)} - C_2^{(s)}}{\Lambda^2}\right)^2 &\leq 2.54 \times 10^{-16} \ GeV^{-4} \ \text{for} \ m_{\chi} = 0.3 \times M_{B_d} \end{aligned}$$

$$\begin{aligned} & \frac{C_3^{(s)}}{\Lambda^2} \frac{C_4^{(s)}}{\Lambda^2} \leq 1.70 \times 10^{-11} \text{ GeV}^{-4} \text{ for } m = 0 \\ & \frac{C_3^{(s)}}{\Lambda^2} \frac{C_4^{(s)}}{\Lambda^2} \leq 2.03 \times 10^{-11} \text{ GeV}^{-4} \text{ for } m = 0.1 \times M_{B_d} \\ & \frac{C_3^{(s)}}{\Lambda^2} \frac{C_4^{(s)}}{\Lambda^2} \leq 3.49 \times 10^{-11} \text{ GeV}^{-4} \text{ for } m = 0.2 \times M_{B_d} \\ & \frac{C_3^{(s)}}{\Lambda^2} \frac{C_4^{(s)}}{\Lambda^2} \leq 9.88 \times 10^{-11} \text{ GeV}^{-4} \text{ for } m = 0.3 \times M_{B_d} \\ & \frac{C_3^{(s)}}{\Lambda^2} \frac{C_4^{(s)}}{\Lambda^2} \leq 8.11 \times 10^{-10} \text{ GeV}^{-4} \text{ for } m = 0.3 \times M_{B_d} \\ & \frac{C_3^{(s)}}{\Lambda^2} \frac{C_4^{(s)}}{\Lambda^2} \leq 8.11 \times 10^{-10} \text{ GeV}^{-4} \text{ for } m = 0.3 \times M_{B_d} \\ & \frac{C_3^{(s)}}{\Lambda^2} \frac{C_4^{(s)}}{\Lambda^2} \leq 8.11 \times 10^{-10} \text{ GeV}^{-4} \text{ for } m = 0.3 \times M_{B_d} \\ & \frac{C_3^{(s)}}{\Lambda^2} \frac{C_4^{(s)}}{\Lambda^2} \leq 8.11 \times 10^{-10} \text{ GeV}^{-4} \text{ for } m = 0.3 \times M_{B_d} \\ & \frac{C_3^{(s)}}{\Lambda^2} \frac{C_4^{(s)}}{\Lambda^2} \leq 8.11 \times 10^{-10} \text{ GeV}^{-4} \text{ for } m = 0.3 \times M_{B_d} \\ & \frac{C_3^{(s)}}{\Lambda^2} \frac{C_4^{(s)}}{\Lambda^2} \leq 8.11 \times 10^{-10} \text{ GeV}^{-4} \text{ for } m = 0.3 \times M_{B_d} \\ & \frac{C_3^{(s)}}{\Lambda^2} \frac{C_4^{(s)}}{\Lambda^2} \leq 8.11 \times 10^{-10} \text{ GeV}^{-4} \text{ for } m = 0.3 \times M_{B_d} \\ & \frac{C_3^{(s)}}{\Lambda^2} \frac{C_4^{(s)}}{\Lambda^2} \leq 8.11 \times 10^{-10} \text{ GeV}^{-4} \text{ for } m = 0.3 \times M_{B_d} \\ & \frac{C_3^{(s)}}{\Lambda^2} \frac{C_4^{(s)}}{\Lambda^2} \leq 8.11 \times 10^{-10} \text{ GeV}^{-4} \text{ for } m = 0.3 \times M_{B_d} \\ & \frac{C_3^{(s)}}{\Lambda^2} \frac{C_4^{(s)}}{\Lambda^2} \leq 8.11 \times 10^{-10} \text{ GeV}^{-4} \text{ for } m = 0.3 \times M_{B_d} \\ & \frac{C_3^{(s)}}{\Lambda^2} \frac{C_4^{(s)}}{\Lambda^2} \leq 8.11 \times 10^{-10} \text{ GeV}^{-4} \text{ for } m = 0.3 \times M_{B_d} \\ & \frac{C_3^{(s)}}{\Lambda^2} \frac{C_4^{(s)}}{\Lambda^2} \leq 8.11 \times 10^{-10} \text{ GeV}^{-4} \text{ for } m = 0.3 \times M_{B_d} \\ & \frac{C_3^{(s)}}{\Lambda^2} \frac{C_4^{(s)}}{\Lambda^2} \leq 8.11 \times 10^{-10} \text{ GeV}^{-4} \text{ for } m = 0.3 \times M_{B_d} \\ & \frac{C_3^{(s)}}{\Lambda^2} \frac{C_4^{(s)}}{\Lambda^2} \leq 8.11 \times 10^{-10} \text{ GeV}^{-4} \text{ for } m = 0.3 \times M_{B_d} \\ & \frac{C_3^{(s)}}{\Lambda^2} \frac{C_4^{(s)}}{\Lambda^2} \leq 8.11 \times 10^{-10} \text{ GeV}^{-4} \text{ for } m = 0.3 \times M_{B_d} \\ & \frac{C_3^{(s)}}{\Lambda^2} \frac{C_4^{(s)}}{\Lambda^2} \leq 8.11 \times 10^{-10} \text{ GeV}^{-4} \text{ for } m = 0.3 \times M_{B_d} \\ & \frac{C_3^{(s)}}{\Lambda^2} \frac{C_4^{(s)}}{\Lambda^2} \frac{C_4^{(s)}}{\Lambda^2} \leq 8.11 \times 10^{-10} \text{ for } m = 0.3 \times M$$

18		V	ector	DM		
C	$p_1 = m$	$_{b}(\overline{b}_{L}q_{R})V_{\mu}$	$_{\mu}V^{\mu},$	$O_4 = (\overline{b}_R)^2$	$\gamma_{\mu}q_R)V^{\mu u}$	$V_{ u},$
C	$D_2 = m$	$_{b}(\overline{b}_{R}q_{L})V_{\mu}$	$_{\mu}V^{\mu},$	$O_5 = (\overline{b}_{L'})$	$\gamma_{\mu}q_L)\widetilde{V}^{\mu u}$	$V_{ u}$,
C	$D_3 = (\overline{b})$	$_L\gamma_\mu q_L)V^\mu$	$^{\mu u}V_{ u},$	$O_6 = (\overline{b}_R)$	$\gamma_{\mu}q_R)\widetilde{V}^{\mu u}$	$V_{ u},$
	whe	ere $\widetilde{V}^{\mu\nu}$ —	$(1/2)\epsilon^{\mu\nu}$	$\alpha\beta V_{e}\rho$ and	d a = s d	
x_χ	C_1/Λ^2 ,	C_2/Λ^2 ,	(1/2)c $C_3/\Lambda^2,$	C_4/Λ^2 ,	$C_5/\Lambda^2,$	C_6/Λ^2 ,
x_{χ}	$\begin{array}{c c} & & \\ & C_1/\Lambda^2, \\ & & \text{GeV}^{-2} \end{array}$	$C_2/\Lambda^2, \ { m GeV}^{-2}$	$\frac{C_3/\Lambda^2}{\text{GeV}^{-2}}$	C_4/Λ^2 , GeV ⁻²	$C_5/\Lambda^2, \ { m GeV}^{-2}$	$C_6/\Lambda^2, \ { m GeV}^{-2}$
x_{χ} 0 0 1	$\begin{array}{c c} & C_1/\Lambda^2, \\ & GeV^{-2} \end{array}$	$\begin{array}{c} C_2/\Lambda^2,\\ \mathrm{GeV}^{-2} \end{array}$	$(1/2)^{c}$ $C_{3}/\Lambda^{2},$ GeV^{-2} 1.4×10^{-8} 1.5×10^{-8}	$\begin{array}{c} C_4/\Lambda^2, \\ GeV^{-2} \\ \hline 1.4 \times 10^{-8} \\ 1.5 \times 10^{-8} \end{array}$	$C_5/\Lambda^2, \ { m GeV}^{-2}$ $\overline{8.9 imes 10^{-9}}$ $9.1 imes 10^{-9}$	$C_6/\Lambda^2, \ { m GeV}^{-2}$ $8.9 imes 10^{-9}$ $9.1 imes 10^{-9}$
x_{χ} 0 0.1 0.2	$\begin{array}{c c} & C_1/\Lambda^2, \\ & GeV^{-2} \\ \hline & 0 \\ 1.2 \times 10^{-9} \\ 5.1 \times 10^{-9} \end{array}$	$C_2/\Lambda^2, \ { m GeV}^{-2}$ 0 $1.2 imes 10^{-9}$ $5.1 imes 10^{-9}$	$C_3/\Lambda^2, \\ { m GeV}^{-2}$ $1.4 imes 10^{-8}$ $1.5 imes 10^{-8}$ $1.5 imes 10^{-8}$	$\begin{array}{c} C_4/\Lambda^2, \\ GeV^{-2} \\ \hline 1.4 \times 10^{-8} \\ 1.5 \times 10^{-8} \\ 1.5 \times 10^{-8} \end{array}$	$C_5/\Lambda^2, \ { m GeV}^{-2}$ $\overline{8.9 imes 10^{-9}}$ $9.1 imes 10^{-9}$ $1.0 imes 10^{-8}$	$C_6/\Lambda^2, \ { m GeV}^{-2} \ 8.9 imes 10^{-6} \ 9.1 imes 10^{-6} \ 1.0 imes 10^{-8} \ 1.0 \$
x_{χ} 0 0.1 0.2 0.3	$\begin{array}{c} C_1/\Lambda^2,\\ \mathrm{GeV}^{-2}\\ \hline 0\\ 1.2\times10^{-9}\\ 5.1\times10^{-9}\\ 1.3\times10^{-8}\\ \end{array}$	$C_2/\Lambda^2, $$$GeV^{-2}$$$$0 $$1.2 imes 10^{-9}$$$$$1.2 imes 10^{-9}$$$$$5.1 imes 10^{-9}$$$$$$1.3 imes 10^{-8}$$$$	$C_3/\Lambda^2, $$GeV^{-2}$$1.4 imes 10^{-8}$$1.5 imes 10^{-8}$$1.5 imes 10^{-8}$$1.6 imes 10^{-8}$$$	$\begin{array}{c} C_4/\Lambda^2, \\ \mathrm{GeV}^{-2} \\ \hline 1.4 \times 10^{-8} \\ 1.5 \times 10^{-8} \\ 1.5 \times 10^{-8} \\ 1.6 \times 10^{-8} \end{array}$	$C_5/\Lambda^2, \ { m GeV}^{-2}$ $\overline{8.9 imes 10^{-9}}$ $9.1 imes 10^{-9}$ $1.0 imes 10^{-8}$ $1.2 imes 10^{-8}$	$C_6/\Lambda^2, \ { m GeV}^{-2}$ $8.9 imes10^{-9}$ $9.1 imes10^{-9}$ $1.0 imes10^{-8}$ $1.2 imes10^{-8}$

Table 1: Constraints (upper limits) on the Wilson coefficients of operators from²² the $B_q \rightarrow \chi_1 \chi_1$ transition.

- $\begin{array}{rcl} C_{57}^2+C_{68}^2 &\leq& 5.15\times 10^{-16}\\ 0.02(C_{13}+C_{24})^2-0.23\tilde{C}_{1-8}+1.32(C_{57}^2+C_{68}^2)+0.05C_{57}C_{68} &\leq& 7.09\times 10^{-16}\\ 0.08(C_{13}+C_{24})^2-0.46\tilde{C}_{1-8}+1.24(C_{57}^2+C_{68}^2)+0.22C_{57}C_{68} &\leq& 7.58\times 10^{-16}\\ 0.18(C_{13}+C_{24})^2-0.69\tilde{C}_{1-8}+1.10(C_{57}^2+C_{68}^2)+0.48C_{57}C_{68} &\leq& 8.66\times 10^{-16}\\ 0.32(C_{13}+C_{24})^2-0.93\tilde{C}_{1-8}+0.92(C_{57}^2+C_{68}^2)+0.86C_{57}C_{68} &\leq& 1.15\times 10^{-15} \end{array}$
 - $C_{ij} \equiv C_i C_j$ $\tilde{C}_{1-8} \equiv C_{13}C_{57} + C_{24}C_{57} + C_{13}C_{68} + C_{24}C_{68}$

28

Fermionic DM upper bounds on Wilson coefficients

x_{χ}	$C_1/\Lambda^2, \ { m GeV}^{-2}$	$C_2/\Lambda^2, \ { m GeV}^{-2}$	$C_3/\Lambda^2,\ { m GeV}^{-2}$	$C_4/\Lambda^2,\ { m GeV}^{-2}$	$C_5/\Lambda^2,\ { m GeV}^{-2}$	$C_6/\Lambda^2, \ { m GeV}^{-2}$	$C_7/\Lambda^2, \ { m GeV}^{-2}$	$C_8 m GeV$
0	-	-	- 1.	-	$2.3 imes 10^{-8}$	$2.3 imes 10^{-8}$	$2.3 imes 10^{-8}$	2.3 imes
0.1	$1.9 imes 10^{-7}$	$1.9 imes 10^{-7}$	$1.9 imes 10^{-7}$	$1.9 imes 10^{-7}$	$2.3 imes 10^{-8}$	$2.3 imes 10^{-8}$	$2.3 imes 10^{-8}$	$2.3 \times$
0.2	$9.7 imes10^{-8}$	$9.7 imes10^{-8}$	$9.7 imes10^{-8}$	$9.7 imes10^{-8}$	$2.5 imes10^{-8}$	$2.5 imes 10^{-8}$	$2.5 imes 10^{-8}$	$2.5 \times$
0.3	$6.9 imes10^{-8}$	$6.9 imes10^{-8}$	$6.9 imes10^{-8}$	$6.9 imes10^{-8}$	$2.8 imes 10^{-8}$	$2.8 imes 10^{-8}$	$2.8 imes 10^{-8}$	$2.8 \times$
0.4	$6.0 imes10^{-8}$	$6.0 imes10^{-8}$	$6.0 imes10^{-8}$	$6.0 imes10^{-8}$	$3.6 imes10^{-8}$	$3.6 imes10^{-8}$	$3.6 imes10^{-8}$	3.6 imes

Table 1: Constraints (upper limits) on the Wilson coefficients of operators the $B_q \rightarrow \chi_{1/2} \overline{\chi}_{1/2}$ transition. Note that operators $Q_9 - Q_{12}$ give no contribution to this decay.

	0			
x_{χ}	$C_1/\Lambda^2,~{ m GeV}^{-2}$	$C_2/\Lambda^2,~{ m GeV}^{-2}$	$C_3/\Lambda^2,~{ m GeV}^{-2}$	$C_4/\Lambda^2,~{ m GeV}^{-2}$
0	$6.3 imes10^{-7}$	$6.3 imes10^{-7}$	$6.3 imes10^{-7}$	$6.3 imes10^{-7}$
0.1	$7.0 imes10^{-7}$	$7.0 imes10^{-7}$	$7.0 imes10^{-7}$	$7.0 imes10^{-7}$
0.2	$9.2 imes10^{-7}$	$9.2 imes10^{-7}$	$9.2 imes10^{-7}$	$9.2 imes10^{-7}$
0.3	$1.5 imes10^{-6}$	$1.5 imes10^{-6}$	$1.5 imes10^{-6}$	$1.5 imes10^{-6}$
0.4	$3.4 imes10^{-6}$	$3.4 imes10^{-6}$	$3.4 imes10^{-6}$	$3.4 imes10^{-6}$

Table 2: Constraints (upper limits) on the Wilson coefficients of operators from the $B_q \rightarrow \chi_{1/2} \overline{\chi}_{1/2} \gamma$ transition. Note that operators $Q_5 - Q_8$ give no contribution to this decay.

29