Thermal Relics and Galactic Dynamics of Dark Matter with Sommerfeld Enhancement

Hai-Bo Yu UC Irvine Pheno 2010

Feng, Kaplinghat and Yu (2009) PRL **arXiv:0911.0422** [hep-ph] Feng, Kaplinghat and Yu (2010) **arXiv:1005.XXXX** [hep-ph]

Outline

- Motivations for dark matter with Sommerfeld enhancement
- Maximal enhancements with relic constraints

 Increased annihilation cross section
 possible non-thermal distribution
 Chemical re-coupling
- Galactic dynamics and halo shape constraints
- Conclusions

Dark Matter and WIMP miracle

 $m_X \sim 250 \text{GeV}, \ \alpha \sim 0.01, \ \langle \sigma_A v \rangle \sim 1.9 \times 10^{-26} \text{cm}^3/\text{s}$

PAMELA and Fermi Results

Astrophysical reasons?

Pulsar, Supernova explosions, Cosmic ray propagation...

Dark matter

Advantages: Weak scale WIMP Challenges: large annihilation cross section. one needs ~100- $1000 \times (3.0 \times 10^{-26} \text{cm}^3/\text{s})$. Lepton modes.

The Fermi LAT Collaboration (2009)

Sommerfeld-enhanced annihilation

- Sommerfeld (1931), Hisano, Matsumoto and Nojiri (2003), Cirelli, Strumia and Tamburini (2007), Arkani-Hamed, Finkbeiner, Slatyer and Weiner (2008)...
- Introduce ~MeV-1GeV force carrier,
 Cross section is enhanced
 Hardronic modes are suppressed by kinematics

Image: Feng

Fitting and tensions

Feng, Kaplinghat and Yu (2009)

Careful treatment

- Annihilation is enhanced after freeze out Before Tkd $v \sim \sqrt{T}$ after Tkd $v \sim T$
- Resonance effects $S \sim \left(\frac{\alpha}{v}\right)^2$

$$\frac{dn_X}{dt} + 3Hn_X = -\langle \sigma_{\rm an} v_{\rm rel} \rangle \left(n_X^2 - n_X^{\rm eq\,2} \right)$$

• Maxwell-Boltzmann distribution?

Slow particles annihilate with larger cross section.

This preferentially depletes the low velocity population and may distort the phase space distribution.

Self-Scattering and thermal distribution

•The Light force carrier also mediates dark matter selfscattering.

•Self-scattering can maintain dark matter thermal distribution in early Universe.

•Bounds from observed elliptical halo shape. Feng, Kaplinghat and Yu (2009), Buckley and Fox (2009).

 $T_{\rm nt} \sim 20 \ \text{keV} \left[\frac{m_{\phi}}{250 \ \text{MeV}} \right] \left[\frac{m_X}{1 \ \text{TeV}} \right]^{\frac{3}{4}} \left[\frac{T_{\rm kd}}{250 \ \text{MeV}} \right]^{\frac{1}{4}} \left[\frac{\kappa}{800} \right]^{-\frac{1}{2}}$

Resonance and Chemical Recoupling

maximized by sitting exactly at resonance.

Maximal enhancement with optimized parameter choices

- •Different modes (4e, 2mu+2e...)
- •Astrophysics uncertainties
- •Different sources for PAMELA and Fermi
- •More complicated models

Astrophysical consequences of selfinteraction of dark matter

• Kinetic decoupling, small scale formation, bound state formation, the Bullet Cluster, halo shape [see Feng, Kaplinghat, Tu and Yu (2009)].

Morphology of dark matter halo with self-interacting dark matter:

- If self-interactions are rapid enough, they lead to
 - isotropic velocity dispersion.
 - spherical halo.
 - isothermal halo.

- These expectations are from simulations of scattering in the hard sphere limit. [Dave et al. (2000), Yoshida et al. (2000), Moore et al. (2000), Craig et al (2001), Kochanek et al. (2001)]
- Many elliptical galaxies show clear evidence for flattened, tri-axial dark matter halos.

 $m_{\phi} > 30 \text{ MeV}$

Feng, Kaplinghat and Yu (2009)

From wikipedia.com

Summary

- Cosmic ray excesses motivate dark matter with Sommerfeld enhancement.
- It has interesting thermal history and galactic dynamics.
- Thermal relic constraints disfavor this explanation.