Cosmology of Composite Inelastic Dark Matter

Siavosh R.Behbahani

Daniele Alves, Philip Schuster, Jay Wacker <u>arXiv:0903.3945</u> <u>arXiv:1003.4729</u>

Pheno2010

Outline

- Quick Review of CIDM
- Dark matter synthesis
- Prospects and predictions
- Conclusion

Review of CiDM

 $\Lambda_d \sim O(100 MeV - 10 GeV)$

$m_H \simeq O(100 GeV)$

Hyperfine physics and CiDM

$$|\psi(0)|^2 \simeq rac{1}{4\pi} egin{cases} 1/a_B^3 = (lpha_{
m t} m_L)^3 & m_L \gg \Lambda_{
m d} \ (\kappa\Lambda_{
m d})^3 & m_L \ll \Lambda_{
m d}. \end{cases}$$

$$\delta m \sim \frac{\Lambda_{\rm d}^2}{m_H}$$

Note that Axial coupling forbids elastic scattering

Monday, May 10, 2010

States of CiDM

Alves, SB, Schuster, Wacker, 1003.4729.

Heavy quarks can bind together

$$V(r) = \frac{\alpha}{r} \left(C_2(r_1 \otimes r_2) - C_2(r_1) - C_2(r_2) \right)$$

Color-Antisymmetric channels attractive

$$E_{\rm Bind} \sim n_H^3 \; \alpha_{\rm dark}^2 m_H$$

 $q_H i$

 $q_H q_H [ij]$

 $q_H q_H q_H [ijk]$

 $q_H q_H q_H q_H [ijkl]$

 \mathbf{OO}

States of CiDM

Alves, SB, Schuster, Wacker, 1003.4729.

Dark Matter Synthesis Early Universe Combination of Dark Hadrons $1+1 \rightarrow 2+0$

Dark Matter Synthesis Post-Confinement chain reaction

Reaction

Energy Released

- $1+1 \rightarrow 2+0$
- $2 + 1 \rightarrow 3 + 0$
- $2+2 \to 4_B + 0_B$
- $2 + 2 \rightarrow 3 + 1$
- $3+1 \rightarrow 4_B + 0_B$

- $Q = E_B m_{\text{light}}$
- $Q = 5E_B m_{\text{light}}$

$$Q = 16E_B$$

- $Q = 4E_B$
- $Q = 12E_B$

First reaction can be endothermic

Last reaction produces: 1 Heavy Baryon, 1Light Anti-Baryon

Dark Matter Synthesis

Dark Matter Synthesis

Dark Matter Synthesis Taxonomy

I.) Complete Synthesis

Mostly baryons, equal components single/multicore mesons

II.) Nearly Complete Synthesis
Mostly baryons, enhanced/suppressed multicore mesons
III.) Incomplete Synthesis
Mostly baryons, no multicore mesons
IV.) Arrested Synthesis
Mostly single core mesons, some baryons
V.) Inhibited Synthesis
Mostly single core mesons, few baryons

Parametric Dependence

Low confinement/lighter heavy quarks, more synthesis

Conclusions

- Cosmology doesn't kill the CiDM idea
- It is possible that DAMA is seeing a subdominant meson fraction