Prospects for Inelastic Dark Matter

Daniele Alves

Stanford / SLAC

In collaboration with M. Lisanti and J. Wacker

DAMA's 8.9 σ annual modulation in single hit rate

► DM interpretation due to Sun and Earth's motion

Elastic heavy WIMP interpretation excluded by other searches

Inelastic Dark Matter (iDM)

Tucker-Smith & Weiner Phys.Rev. D64 (2001) 043502

$\delta m \sim 100 \text{ keV}$

$$V_{min} = \frac{1}{\sqrt{2m_N E_R}} \left(\delta m + \frac{m_N E_R}{\mu} \right)$$

CRESST experiment

might have seen less events than typically predicted by iDM in the 10 - 40 keV region

W. Seidel - WONDER 2010 Workshop

only II live days of exposure for calibration run

strongest current limits on DM

only II live days of exposure for calibration run

strongest current limits on DM

What affects predictions for Dark Matter Direct Detection ?

Astrophysical uncertainties

 \rightarrow Local DM velocity distribution

Particle physics uncertainties

→ DM interactions & scattering kinematics

Detector uncertainties

scattering rate in iDM is highly sensitive to velocity distribution

$$\frac{dR}{dt} \propto \int_{v_{\rm min}}^{v_{\rm esc}} d\vec{v} \quad \frac{f(\vec{v} + \vec{v}_{\rm earth})}{v}$$

- ► standard assumption: Maxwell-Boltzmann distribution $f(\vec{v}) \propto (e^{-\frac{v^2}{v_0^2}} - e^{-\frac{v_{esc}^2}{v_0^2}})\Theta(|\vec{v}_{esc} - \vec{v}|)$
- ► standard procedure: **benchmark** velocity parameters v_0 and v_{esc} → narrows the parameter space and limits the predictions
- broader and more sensible procedure:

marginalize over unknown velocity parameters

numerical simulations of galactic DM structure:

significant departure from Maxwell-Boltzmann distribution
 substructures and streams?

observations of Saggitarius stellar tidal steam

Law & Majewski Ap.J. 714 (2010) 229-254

symmetry axes of halo and disk unrelated?

Investigate 3 scenarios:

Standard Maxwell-Boltzmann

marginalize over v_0 and $v_{\rm esc}$

Local stream

$$f(\vec{v}) = \delta^3(\vec{v} - \vec{v}_{\text{stream}})$$

marginalize over magnitude and direction of $ec{v}_{
m stream}$

Axisymmetric halo

$$\int f(\vec{v}) \propto e^{-\alpha L_y^2} e^{-\frac{v^2}{v_0^2}} \Theta(|\vec{v}_{\text{esc}} - \vec{v}|)$$

marginalize over $\,v_0$, $v_{\rm esc}\,$ and α

Cross-Section dependence on momentum transfer

 $\blacktriangleright \sigma \propto \sigma_0$ (e.g. sneutrino)

Dark Matter Form Factor (sign of compositeness)

•
$$\sigma \propto \sigma_0 q^2$$
 (e.g. CiDM)

•
$$\sigma \propto \sigma_0 q^4$$

- $\label{eq:several-independent} \blacktriangleright Several independent measurements found 0.05 \leq q_I \leq 0.09$

Recoil Energy (keV)	q_I
22-330	0.09 ± 0.01
40-100	0.08 ± 0.02
10-71	0.086 ± 0.007
40-300	0.05 ± 0.02

Bernabei et.al. PLB389 (1996) Pecourt et.al. ApJ11 (1999) Tovey et.al. PLB433 (1998) Fushimi et.al. PRC47 (1993)

DAMA

DAMA

DAMA

CRESST

Summary and Conclusions

- Uncertainties on the DM velocity distribution, DM form factor and ¹²⁷I quenching factor have a dramatic impact on predictions for direct detection
- In light of that, it is unlikely that the next CRESST data release will rule out iDM in a completely model independent way.

- XENON100 data from this summer will decisively exclude of confirm iDM.
- In case it confirms iDM, it might tell us a lot about properties of the dark matter particle and our Milky Way halo.

THANK YOU