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Measurement of Bose-Einstein Correlations

In the first LHC-CMS data
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BEC in High Energy Physics

=

During high-energy collisions,
bosons are created at small
distance 1n a “fireball”
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Why measure BEC again?

This is not a new phenomenon:

1. measured for the first time in HEP by Goldhaber (1960);
2. Since then, many measurements with different detectors
and different initial states (e*e-, pp, pp, #N and v, N).

However...

1. We have a new accelerator (LHC), and therefore
higher energies (2.36 TeV in December, now 7 TeV). | ISETEEE

2. We have a new, hopefully more powerful detector LAl
(CMS).

done with real data!




How to measure BEC?

Theoretically, we need to study the ratio between P(p.p)
the joint probability of emission of a pair of bosons, » R = 5 P 2
and the individual probabilities (P)P(p.)

m) r- dN / dQy
dN /dQ

ref

and in a reference sample (Coulomb corrected)

v v

To measure the proximity between 2 | | To calculate R:
particles, we chose the difference of 1. Take all (charged) tracks.
4-momentum (assuming all pions): 2. Construct Q.

Q =1/~ (p,— p,)? =/m2, —4m ? 3. Repeat for the reference sample.

5



Reference samples

We used 7 reference samples, mainly taken from literature:

Opposite charge pairs;

Opposite charge pairs where one track has its three-momentum inverted;

Same-charge pairs where one track has its three-momentum inverted ;

“rotated” pairs: same charge with one track inverted in the transverse plane;

Event mixing 1: every pair has one track from one event, the other from the

following selected event;

6. Event mixing 2: as above, but events are paired such that they have similar
distribution of dN,,,../d7;

7. Event mixing 3: as above, but events are paired such that they have similar
total invariant mass of charged tracks;

RIS -

None of these reference »
samples is “golden” for our analysis




Evidence of the effect
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Spectra are not flat,
In particular for some
reference samples
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Double ratio data / MC

Every reference sample,
“natural” (opposite-sign) or “artificial”,
IS distorted If compared with the real event

Part of the distortion is due to the kinematics or decays,
well described by the MC simulation
[ dN /dQ j
dN/d
e

dN /dQ
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ratio between data and MC " [
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Parametrizations

To perform the fit of the double-ratio spectra, we used the function:
R(Q) =C[1+1Q(Qr)]1+RQ)

Where A measures the strength for incoherent boson emission

from independent source, & accounts for long-distance
correlations, and C is a normalization factor.

In a static model of particle emission, the Q(Qr)
function is the Fourier transform of the emission
region, whose effective size is measured by r.

We chose two parametrizations:

1. Q(Qr) =exp(-Qr) — Exponential, our default.
2. Q(Qr) = exp(-Q?r?) — Gaussian, widely used.




Double ratio

Fits for data @ 900 GeV

Double ratio
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Additional check

In our data, many particles have
small momentum (p < 2 GeV)
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Different parametrizations

Q(Qr) = exp(-Qr) — Exponential Q(Qr) = exp(-Q?r?) — Gaussian
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Combined reference sample

We consider it valuable to provide a single value,
together with a conservative estimate of the systematic error
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Then we performed an exp. fit for both sets of data:
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Systematic uncertainties

No reference sample is perfect,
and none can be discarded

Gamow factor to correct
Coulomb effects (£15%)

Data @ 900 GeV:
r=1.59=+0.05 +0.19 fm; 1=0.625+0.021, + 0.046,;
Data @ 2.36 TeV:
r=199+0.18,, +0.24, fm; 1 =0.663 + 0.073,; £ 0.048, .,
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Dependence on event topology
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Our results confirm what was noticed with previous experiments
In a wide range of energies and initial states

15



Fit: Gaussian
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« \We immediately saw the effect (as expected):

— Clearly visible also in the single ratio.

— Checked with particle identification.
« Measurement and systematic uncertainties:

— We used the double ratio data/MC.

— Fit (exp. and Gaussian) with many reference samples.
* \We tried to give a single number:

— Combined reference sample.

— Dependence from the (charged) track multiplicity.
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The CMS Silicon Tracker

TOB
Outer Barrel
6 layers

TEC - Endcap
9 disks
(also on the other
side - not shown)

Tracker
Pixels Support
Tube

o Pixel:
e ~1m? of Si sensors;
 66M channels, 1440 modules;
« 3 barrel layers (R=4, 7, 11 cm),

2 endcap disks; o
] nner Barrel
3 Stnps_ | 4 layers ) o
e ~198 m? of Si sensors; ey fipin

3+3 disks

 9.6M channels, 15148 modules:

« 10 barrel layers,
9+3 endcap wheels per side;
e In|<2.5.

« From simulation studies
» Tracking efficiency > 99% (L),
> 90% (hadrons)
* Resolution: Ap/p ~ 1-2%
(@100 GeV, n| < 1.6)
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Additional selections

A track was used if:
1. p;+>200 MeV (to cross all 3 layers of pixel detectors);

2. In|<2.4;
3. Ny >5and x2/Ny < 5.0;
4. |d,,| <0.15cm and Ry ermoest < 20 CM.

0.02 GeV < Q< 2.0GeV

4 \
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Gamow factors

The Coulomb interaction modifies
the Q-value distribution of same-
charge and different-charge pairs
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Particle Identification

Charged particles with low momentum can be identified
using the energy loss in the silicon due to ionization

dE/dx Estimator [MeV/cm|

10p RN RN RN LR LN RRREE AR
- d CMS preliminary -

9F VS = 900 GeV =

8 i_ Fit to refer‘ence data _i

3 onr E

6F ax e © -

sE with K= 2.468 + 0.009 N oN / &
i + M< M- 200 MeV.
3

2 Anon-r has, at the same time:
1;_ SR AL PR ¢ dE/dX > 4.15 Mev and
0 335445 5 M> M, —200 MeV.
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Dependence on event topology
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