

Measurement of Bose-Einstein Correlations in the first LHC-CMS data

<u>Massimo Nespolo</u> on behalf of CMS Collaboration

Pheno 2010 (Madison) - May 10-12, 2010

Measurement of Bose-Einstein Correlations in the first LHC-CMS data

Outline:

- *BEC* in High-Energy Physics:
 - A long story…
- Effect clearly evident in our data:
 - Different reference samples.
 - Particle identification.
- What we measured:
 - Double ratio data/MC.
 - Fit with exp. and gaussian shape.

BEC in High Energy Physics

During high-energy collisions, bosons are created at small distance in a "fireball"

Their wave functions overlap, and the Bose-Einstein statistics changes their dynamics

This is essentially the only way to measure the size of a source at the Fermi scale

Why measure BEC again?

This is *not* a new phenomenon:

(*CMS*).

- 1. measured for the first time in HEP by Goldhaber (1960);
- 2. Since then, many measurements with different detectors and different initial states (e^+e^- , pp, $p\overline{p}$, πN and $v_\mu N$).

However...

 We have a new accelerator (*LHC*), and therefore higher energies (2.36 TeV in December, now 7 TeV).
 We have a new, hopefully more powerful detector

This is one of the *first* physics measurements

done with real data!

How to measure BEC?

Theoretically, we need to study the ratio between the joint probability of emission of a pair of bosons, and the individual probabilities

$$R = \frac{P(p_{1}, p_{2})}{P(p_{1})P(p_{2})}$$

Experimentally, we have to produce the distributions of a "proximity" quantity in the data and in a reference sample (*Coulomb corrected*)

$$R = \frac{dN / dQ_{data}}{dN / dQ_{ref}}$$

To measure the proximity between 2 particles, we chose the difference of 4-momentum (assuming all pions):

$$Q = \sqrt{-(p_1 - p_2)^2} = \sqrt{m_{inv}^2 - 4m_{\pi}^2}$$

To calculate R:

- 1. Take all (charged) tracks.
- 2. Construct Q.
- 3. Repeat for the reference sample.

Reference samples

We used 7 reference samples, mainly taken from literature:

- 1. Opposite charge pairs;
- 2. *Opposite charge* pairs where one track has its *three-momentum inverted*;
- 3. Same-charge pairs where one track has its three-momentum inverted ;
- 4. "rotated" pairs: same charge with one track inverted in the transverse plane;
- 5. Event mixing 1: every pair has one track from one event, the other from the *following selected event*;
- 6. Event mixing 2: as above, but events are paired such that they have *similar distribution of* $dN_{tracks}/d\eta$;
- 7. Event mixing 3: as above, but events are paired such that they have *similar total invariant mass of charged tracks*;

None of these reference samples is "golden"

We used all of them for our analysis

Evidence of the effect

Double ratio data / MC

Every reference sample, "natural" (opposite-sign) or "artificial", is distorted if compared with the real event

Part of the distortion is due to the kinematics or decays, well described by the MC simulation

To remove the long-range bias, evident in some of the reference samples, we used the double ratio between data and MC

$$\Re = \frac{R}{R_{MC}} = \frac{\left(\frac{dN/dQ}{dN/dQ_{ref}}\right)}{\left(\frac{dN/dQ}{dN/dQ_{ref}}\right)_{MC}}$$

Parametrizations

To perform the fit of the double-ratio spectra, we used the function:

$$R(Q) = C[1 + \lambda \Omega(Qr)](1 + \delta Q)$$

Where λ measures the strength for incoherent boson emission from independent source, δ accounts for long-distance correlations, and *C* is a normalization factor.

In a static model of particle emission, the $\Omega(Qr)$ function is the *Fourier transform of the emission region*, whose effective size is measured by *r*. We chose two parametrizations:

- 1. $\Omega(Qr) = exp(-Qr) Exponential$, our default.
- 2. $\Omega(Qr) = exp(-Q^2r^2) Gaussian$, widely used.

Fits for data @ 900 GeV

Results are between 1.29 and 1.85 for *r*, 0.56 and 0.68 for λ

For the opposite charge, we removed the region with sizeable contribution from $\rho \rightarrow \pi^+ \pi^-$

Double ratio

1.8

1.4

1.2

0.8

1.8

1.4

1.2

0.8

1.8

1.6

1.4

1.2

0.8

0.2 0.4

Double ratio

0.4 0.2

0.6 0.8

Double ratio

0.2 0.4 0.8

Additional check

In our data, many particles have small momentum (p < 2 GeV)

The energy loss in the tracker allows to select π and non- π

Signal is *really due* to BEC (enhanced for $\pi\pi$ pairs)

The plot is almost flat for particles of different type

Different parametrizations

We tested: exponential, Gaussian, Levy, and those described by Kozlov and Biyajima

All functions with the Gaussian form have to be ruled out: the others give equally good results

Combined reference sample

We consider it valuable to provide a single value, together with a conservative estimate of the systematic error

Since the samples are correlated, we cannot simply calculate the average of r and λ

$$\Re^{avg} = \frac{dN / dQ}{dN / dQ_{MC}}$$

$$\frac{\overline{i=1}}{\sum_{i=1}^{m} dN / dQ^{i}}$$

 $\sum dN / dQ_{MC}^{i}$

Then we performed an exp. fit for both sets of data:

Systematic uncertainties

No reference sample is perfect, and none can be discarded

r.m.s. of fit results $(\pm 7\% \text{ for } \lambda, \pm 12\% \text{ for } r)$

Gamow factor to correct Coulomb effects (±15%)

Propagate agreement margin $(\pm 2.8\% \text{ for } \lambda, \pm 0.8\% \text{ for } r)$

By comparing MC (*with BEC*) at the reconstruction and generation level, we noticed that variations are within errors.

Data @ 900 GeV: $r = 1.59 \pm 0.05_{stat.} \pm 0.19_{syst.}$ fm; $\lambda = 0.625 \pm 0.021_{stat.} \pm 0.046_{syst.}$ Data @ 2.36 TeV: $r = 1.99 \pm 0.18_{stat.} \pm 0.24_{syst.}$ fm; $\lambda = 0.663 \pm 0.073_{stat.} \pm 0.048_{syst.}$

Dependence on event topology

Significant dependence of the *r* parameter with the chargedparticle multiplicity in the event for *all reference samples*

Our results confirm what was noticed with previous experiments in a wide range of energies and initial states

- We immediately saw the effect (as expected):
 - Clearly visible also in the single ratio.
 - Checked with particle identification.
- Measurement and systematic uncertainties:
 - We used the double ratio data/MC.
 - Fit (exp. and Gaussian) with many reference samples.
- We tried to give a single number:
 - Combined reference sample.
 - Dependence from the (charged) track multiplicity.

Backup slides

The CMS Silicon Tracker

- Pixel:
 - ~1 m² of Si sensors;
 - 66M channels, 1440 modules;
 - 3 barrel layers (*R*=4, 7, 11 cm),
 2 endcap disks;
- Strips:
 - ~198 m² of Si sensors;
 - 9.6M channels, 15148 modules;
 - 10 barrel layers,
 9+3 endcap wheels per side;
 - $|\eta| < 2.5.$

- From simulation studies
 - Tracking efficiency > 99% (μ),
 > 90% (hadrons)
 - Resolution: $\Delta p/p \sim 1-2\%$ (@100 GeV, $|\eta| < 1.6$)

Additional selections

A track was used if:

- 1. $p_T > 200 \text{ MeV}$ (to cross all 3 layers of *pixel* detectors);
- 2. $|\eta| < 2.4;$
- 3. $N_{dof} > 5$ and $\chi^2/N_{dof} < 5.0$;
- 4. $|d_{xy}| < 0.15$ cm and $R_{innermost} < 20$ cm.

Gamow factors

The Coulomb interaction modifies the Q-value distribution of samecharge and different-charge pairs

We need to correct this effect, and this is usually done by applying the Gamow factors W_S and W_D

$$W_{S}(\eta) = \frac{e^{2\pi\eta} - 1}{2\pi\eta} \quad W_{D}(\eta) = \frac{1 - e^{-2\pi\eta}}{2\pi\eta} \quad \text{with} \quad \eta = \frac{\alpha_{em} m_{\pi}}{Q}$$

We checked this correction on the ratio data/MC with opposite-charge tracks

Particle Identification

Charged particles with low momentum can be identified using the energy loss in the silicon due to ionization

We considered a particle a πif :

- dE/dx < 3.6 MeV;
- Or if:
 - dE/dx > 3.6 MeV and

•
$$M < M_K - 200 \text{ MeV}.$$

A non- π has, at the same time:

• *dE/dx* > 4.15 MeV *and*

•
$$M > M_K - 200 \text{ MeV.}$$

Dependence on event topology

Exponential fits of combined samples for different values of the track multiplicity

Shape which clearly changes with the chargedtracks multiplicity