New particle mass spectrometry at the LHC : Resolving combinatoric endpoints

Won-Sang Cho (IPMU)
2010.05. 10
PHENO 2010

Resolving every meaningful endpoints hidden in inclusive signature

(1) Amplification of the endpoint structure Ref: arXiv0912.2354 [W.Cho, J.E. Kim, J. Kim]

(2) General combinatoric endpoints

[Work in progress with M. M. Nojiri]
\rightarrow New particle mass spectrometry at the LHC

Amplification of $\mathbf{M}_{\mathrm{T} 2}$ endpoints

- $\mathrm{M}_{\mathrm{CT} 2}$?? [ref) arXiv:0912.2354, Cho, Kim, Kim]
$M_{C T 2}$ for

$$
Y Y \rightarrow \mathrm{~V}(\mathrm{p})+\chi(\mathrm{k})+\mathrm{V}(\mathrm{p})+\chi(\mathrm{k})
$$

$M_{C T 2}{ }^{2} \equiv \min \left[\max \left\{M_{C T}\left(Y_{1}\right), M_{C T}\left(Y_{2}\right)\right\}\right]$
$M_{C T} \equiv m_{V}{ }^{2}+m_{\chi}{ }^{2}+2 \sqrt{m_{V}{ }^{2}+\left|\mathbf{p}_{\mathbf{T}}\right|^{2}} \sqrt{m_{\chi}{ }^{2}+\left|\mathbf{k}_{\mathbf{T}}\right|^{2}}+2 \mathbf{p}_{\mathbf{T}} \cdot \mathbf{k}_{\mathrm{T}}$,

- $\mathbf{p}_{\mathrm{T}}=$ visible transverse momenta in the LAB frame
- min\&max over all possible invisible missing momentum $\mathbf{k}_{\mathbf{T}}$

Accentuating the buried break points in N -jet events

- $\tilde{q} \tilde{q} \rightarrow \tilde{\mathrm{~g} q} \mathrm{~g} q \rightarrow \mathrm{qqq} \chi$ qqq χ

\rightarrow Systematic errors for physical constraints reduced by $\mathrm{O}\left(1 / \mathrm{J}_{\max }\right)$ in local fitting of break points. $\mathrm{J}_{\max }:$ Jacobian factor near the endpoint region

This enhances our observability for several endpoints.
(Previously)
Impose hard cut, and remove the BG events near the endpoint.
(Now)
Well, moderate cut \& irreducible BGs are okay, as long as there exist dim BPs from signal endpoints. We can magnify it !

Then, what endpoints are to be amplified by $\mathbf{M}_{\mathrm{CT} 2}$ projection ???

Complex new physics event topology at the LHC

P

Decay chain crossing two particle endpoint functions as basic

 building blocks for mass reconstruction in $\mathbf{N} \times \mathbf{M}$ decay chains.
Along the decay lines

CM Energy is bounded above by decayed mother particles in a decay chain $M\left(\alpha_{\mathrm{i}}, \alpha_{\mathrm{j}} / \beta_{\mathrm{k}}, \beta_{\mathrm{m}}\right) \leq M^{\max }$
$=>\mathrm{M}_{\mathrm{A}_{\mathrm{i}}}, \mathrm{M}_{\mathrm{A}_{\mathrm{j}}}, \mathrm{M}_{\mathrm{B}_{\mathrm{k}}}, \mathrm{M}_{\mathrm{B}_{\mathrm{m}}} \ldots$
Crossing the decay lines
CM Energy is not bounded in a event by event basis. $f\left(\alpha_{\mathrm{i}}, \beta_{\mathrm{j}}\right)^{\max }(? ?)=>\mathrm{M}_{\mathrm{A}_{\mathrm{i}}}, \mathrm{M}_{\mathrm{A}_{\mathrm{i}+1}}, \mathrm{M}_{\mathrm{B}_{\mathrm{j}}}, \mathrm{M}_{\mathrm{B}_{\mathrm{j}+1}}$
$f \sim M_{T 2}, M_{C T}, M_{C T 2} \cdots$
$\sim P_{\alpha_{\mathrm{i}}} \cdot P_{\beta_{\mathrm{i}}} \quad(\cdot:$ Euclidean dot product $)$

Why two?

1. Smallest combinatorics in NxM visibles
2. No internal combinatorics for $f=$ Combinatoric $-M_{C T 2}$
3. Single massless SM particle in each decay chains $=>$ Simple and Good for endpoint amplification for $\mathrm{C}-\mathrm{M}_{\mathrm{CT} 2}$

Combinatoric $-\boldsymbol{M}_{C T 2}\left(\alpha_{i}-\boldsymbol{\beta}_{j}\right)$ [work in progress]
Let's take a system of interest with transverse momentum, $-\boldsymbol{\delta}_{\boldsymbol{T}}$.

$$
\begin{aligned}
\mathbf{p p} \rightarrow & \left(\delta_{T}\right)+\left(\alpha_{1}, \ldots \alpha_{\mathrm{i}} \ldots \alpha_{\mathrm{N}} / \beta_{1} \ldots \beta_{\mathrm{j}} \ldots \beta_{\mathrm{N}} / \text { New physics missing PTLs }\right) \\
\rightarrow & \left(\delta_{T}\right)+\left(\alpha_{\mathrm{i}} \beta_{\mathrm{j}}+(\text { assumed to be }) \text { missing particles }\left(\mathbb{E}_{\mathrm{T}}^{\prime}\right)\right) \\
& (\mathrm{i}=1 \ldots \mathrm{~N}, \mathrm{j}=1 . . \mathrm{M})
\end{aligned}
$$

$C-M_{C T 2}{ }^{2}\left(\alpha_{\mathrm{i}}-\beta_{\mathrm{j}}\right) \equiv \min \left[\max \left\{M_{C T}\left(A_{\mathrm{i}}\right), M_{C T}\left(B_{j}\right)\right\}\right]$
$M_{C T} \equiv \chi^{2}+2\left|\mathbf{p}_{\mathrm{T}}\right| \sqrt{\chi^{2}+\left|\mathbf{k}_{\mathrm{T}}\right|^{2}}+2 \mathbf{p}_{\mathrm{T}} \cdot \mathbf{k}_{\mathrm{T}}$,

- $\mathbf{p}_{\mathrm{T}}=$ visible transverse momenta
- $\chi=$ universal test mass for $\mathrm{A}_{\mathrm{i}+1} \& \mathrm{~B}_{\mathrm{j}+1}$ (in general $\mathrm{M}_{\mathrm{A}_{\mathrm{i}+1}} \neq \mathrm{M}_{\mathrm{B}_{\mathrm{j}+1}}$)
- $\mathbf{k}_{\mathrm{T}}(\alpha)+\mathbf{k}_{\mathrm{T}}(\beta)=-\left(\alpha_{i T}+\boldsymbol{\beta}_{j T}\right)-\boldsymbol{\delta}_{T}=\boldsymbol{E}_{T}^{\prime}$
- min\&max over all possible invisible missing momentum $\mathbf{k}_{\mathbf{T}}$
$\mathrm{C}-\mathrm{M}_{\mathrm{CT} 2}\left(\alpha_{\mathrm{i}}-\beta_{\mathrm{j}}\right)$ has well-defined (amplified) endpoint value for general non-zero δ_{T} and univeral test mass, χ

Universal test mass, $\chi=$ Controlling parameter of the amplification

Utilizable for complex event topologies with additional missing particles

Totally asymmetric system
If $(M-1)(N-1) \geq 3$, all the masses can be measured only with $\mathrm{C}-\mathrm{M}_{\mathrm{CT} 2}$

$$
\text { Totally symmetric case, } \mathrm{N}=\mathrm{M} \& \text { intermediate particles with same masses. }
$$

If $M \geq 2$, all of the $\mathrm{M}+1$ masses can be determined with $\mathrm{C}-\mathrm{M}_{\text {Ст2 }}$.

4jets $\rightarrow 6$ possible pairs of jets / 3 Independent decay crossing pairs exist

1) $\alpha(1)-\beta(1)$
2) $\alpha(1)-\beta(2) / \alpha(2)-\beta(1)$
3) $\alpha(2)-\beta(2)$

$$
\tilde{q} \tilde{q} \rightarrow\left(q q \tilde{\chi}_{1}^{0}\right)+\left(q \tilde{\chi}_{1}^{0}\right)
$$

3 jets $\rightarrow 3$ pairs /
2 Independent decay crossing pairs exist
2) $\alpha(1)-\beta(2) / \alpha(2)-\beta(1)$
3) $\alpha(2)-\beta(2)$

Partonic level results : $\mathrm{C}-\mathrm{M}_{\mathrm{T} 2}$

Partonic level results : $\mathrm{C}-\mathrm{M}_{\mathrm{CT} 2}$

SPS1a gluino pair production(4j) Parton level

Conclusion

- $\quad \mathbf{M}_{\mathrm{CT2}}$: impressive endpoint structure enhancement.

Small slope discontinuities are amplified by $\mathrm{J}(\mathrm{x})^{2}$, accentuating the breakpoint structures clearly.

Extract the various constraints hidden in complex inclusive signatures

- Combinatoric- $\mathrm{M}_{\mathrm{CT} 2}$ has well-defined endpoints and power to accentuate them.
- With C-M $\mathrm{M}_{\text {GT2 }}$ ordinary combinatoric background is not only background anymore. It provides mass information to be analyzed.
- Thus, C-M $\mathrm{Cut}_{\text {che }}$ can be a useful tool for every new, particle mass measurement in generic complex event topologies.

Back up slides

The event selection cuts were as follows:
(1) No leptons, no b jets in the event,
(2) Number of jets $=6,7$ with $P_{T}^{1 \mathrm{st}, 2 \text { nd }} \geq 100 \mathrm{GeV}$, $P_{T}^{6 \text { th }} \geq 50 \mathrm{GeV}$,
(3) $\mathscr{E}_{T} \geq 100 \mathrm{GeV}$,
(4) $\alpha^{n} \geq 0.45$ with $n(=1, \cdots, 15)$ for the pairs of selected two jets,
(5) $\Delta_{T}\left(\equiv\left|\not \mathscr{E}_{T}+\sum_{j=1, \cdots, 6} \mathbf{p}_{T}^{j}\right|\right) \leq 30 \mathrm{GeV}$,

- IF $\mathrm{m}_{\mathrm{vis}} \sim 0, \mathrm{M}_{\mathrm{CT2}}(\mathrm{x})$ projection can have significantly amplified endpoint structure ($x=$ Trial missing ptl mass)
- $\mathrm{J}_{\max }(\mathrm{x}) \Rightarrow \infty$ as $\mathrm{x} \Rightarrow \mathbf{0}$
- One can control $\mathrm{J}_{\max }(\mathrm{x})$ by choosing proper value of x

$$
\begin{gathered}
\sigma^{-1} \frac{d \sigma}{d M_{C T}(\chi)} \sim J \sigma^{-1} \frac{d \sigma}{d M_{T}(\chi)} \\
J=\frac{M_{C T}(\chi)}{M_{T}(\chi)} \frac{\left(e_{X}+\left|\mathbf{p}_{0 T}\right|\right)^{2}}{\left(e_{X}-\left|\mathbf{p}_{0 T}\right|\right)^{2}}
\end{gathered}
$$

$$
\rightarrow\left\{\begin{array}{cl}
\frac{M_{C}(\chi)}{M(\chi)} \frac{\left(E_{X}+\left|\mathbf{p o}_{0}\right|\right)^{2}}{\left(E_{X}-\left|\mathbf{p}_{O}\right|\right)^{2}} & \text { Endpoint region, } J_{\max } \\
1 & \text { Minimum region }
\end{array}\right.
$$

- A faint BP(e.g. signal endpoint) with small slope difference amplified by large Jacobian factor :

$$
\Delta \mathrm{a} \Rightarrow \Delta \mathrm{a}^{\prime}=\mathrm{J}_{\max }^{2}(\mathrm{x}) \Delta \mathrm{a}
$$

With the accentuated BP structure, the fitting scheme (function/range) can be elaborated, and it can significantly reduces the systematic uncertainties in extracting the position of the BPs !

