New particle mass spectrometry at the LHC : Resolving combinatoric endpoints

Won-Sang Cho (IPMU)

2010. 05. 10 PHENO 2010

Resolving every meaningful endpoints hidden in inclusive signature

(1) Amplification of the endpoint structure Ref: arXiv0912.2354 [W.Cho, J.E. Kim, J. Kim]

(2) General combinatoric endpoints

[Work in progress with M. M. Nojiri]

New particle mass spectrometry at the LHC

Amplification of M_{T2} endpoints

• M_{CT2} ?? [ref) arXiv:0912.2354, Cho, Kim, Kim]

 $M_{CT2} \text{ for}$ $Y Y \rightarrow V(p) + \chi(k) + V(p) + \chi(k)$ $M_{CT2}^2 \equiv \min[\max\{M_{CT}(Y_1), M_{CT}(Y_2)\}]$ $M_{CT} \equiv m_V^2 + m_\chi^2 + 2\sqrt{m_V^2 + |\mathbf{p}_T|^2}\sqrt{m_\chi^2 + |\mathbf{k}_T|^2} + 2\mathbf{p}_T \cdot \mathbf{k}_T,$ $\mathbf{p}_T = \text{visible transverse momenta in the LAB frame}$ $\cdot \min\&\max \text{ over all possible invisible missing momentum } \mathbf{k}_T$

Accentuating the buried break points in N-jet events

• $\tilde{q}\tilde{q} \rightarrow \tilde{g}q \tilde{g}q \rightarrow qqq \chi qqq \chi$

→ Systematic errors for physical constraints
 reduced by O(1/J_{max}) in local fitting of break points.
 J_{max} : Jacobian factor near the endpoint region

This enhances our observability for several endpoints.

(Previously) Impose hard cut, and remove the BG events near the endpoint.

(Now) Well, moderate cut & irreducible BGs are okay, as long as there exist dim BPs from signal endpoints. We can magnify it !

Then, what endpoints are to be amplified by M_{CT2} projection ???

Complex new physics event topology at the LHC

Decay chain crossing two particle endpoint functions as basic building blocks for mass reconstruction in $N \times M$ decay chains.

Along the decay lines

CM Energy is bounded above by decayed mother particles in a decay chain $M(\alpha_i, \alpha_j / \beta_k, \beta_m) \le M^{\max}$ $=> M_{A_i}, M_{A_i}, M_{B_k}, M_{B_m}....$

Crossing the decay lines

CM Energy is not bounded in a event by event basis. $f(\alpha_{i}, \beta_{j})^{\max} (??) => M_{A_{i}}, M_{A_{i+1}}, M_{B_{j}}, M_{B_{j+1}}$ $f \sim M_{T2}, M_{CT}, M_{CT2}....$ $\sim P_{\alpha_{i}} \cdot P_{\beta_{i}} \quad (\bullet : Euclidean \text{ dot product })$

Why two ?

- 1. Smallest combinatorics in NxM visibles
- 2. No internal combinatorics for $f = Combinatoric M_{CT2}$
- 3. Single massless SM particle in each decay chains

=> Simple and Good for endpoint amplification for $C-M_{CT2}$

Combinatoric - $M_{CT2}(\alpha_i - \beta_j)$ [work in progress] Let's take a system of interest with transverse momentum, $-\delta_T$.

$$C - M_{CT2}^{2} (\alpha_{i} - \beta_{j}) \equiv \min[\max\{M_{CT}(A_{i}), M_{CT}(B_{j})\}]$$
$$M_{CT} \equiv \chi^{2} + 2 |\mathbf{p}_{T}| \sqrt{\chi^{2} + |\mathbf{k}_{T}|^{2}} + 2\mathbf{p}_{T} \cdot \mathbf{k}_{T},$$

• \mathbf{p}_{T} = visible transverse momenta

• $\chi = universal test mass for A_{i+1} \& B_{i+1} (in general M_{A_{i+1}} \neq M_{B_{i+1}})$

•
$$\mathbf{k}_{\mathrm{T}}(\alpha) + \mathbf{k}_{\mathrm{T}}(\beta) = -(\alpha_{iT} + \beta_{jT}) - \delta_{T} = \mathbb{E}_{T}'$$

• min&max over all possible invisible missing momentum \mathbf{k}_{T}

 $C-M_{CT2}(\alpha_i-\beta_j)$ has well-defined (amplified) endpoint value for general non-zero δ_T and universal test mass, χ

Universal test mass, χ = Controlling parameter of the amplification

Utilizable for complex event topologies with additional missing particles

Totally asymmetric system

If $(M - 1)(N - 1) \ge 3$, all the masses can be measured only with C-M_{CT2}

Totally symmetric case, N=M & intermediate particles with same masses.

If $M \ge 2$, all of the M+1 masses can be determined with C-M_{CT2}.

The additional vertical constraints (M_{$\alpha\alpha$}/M_{$\beta\beta$}) can be helpful, also.

Simple Example :

$\tilde{g}\tilde{g} \to (q+\tilde{q}) + (q+\tilde{q}) \to (qq\tilde{\chi}_1^0) + (qq\tilde{\chi}_1^0)$

4jets → 6 possible pairs of jets / 3 Independent decay crossing pairs exist

1) $\alpha(1)-\beta(1)$ 2) $\alpha(1)-\beta(2)/\alpha(2)-\beta(1)$ 3) $\alpha(2)-\beta(2)$

$$\tilde{g}\tilde{q} \to (qq\tilde{\chi}_1^0) + (q\tilde{\chi}_1^0)$$

3 jets → 3 pairs /
2 Independent decay crossing pairs exist

2) $\alpha(1)-\beta(2)/\alpha(2)-\beta(1)$ 3) $\alpha(2)-\beta(2)$

Partonic level results : C-M_{T2}

Partonic level results : C-M_{CT2}

Conclusion

- M_{CT2} : impressive endpoint structure enhancement.
- Small slope discontinuities are amplified by J(x)², accentuating the breakpoint structures clearly.
- Extract the various constraints hidden in complex inclusive signatures
- Combinatoric-M_{CT2} has well-defined endpoints and power to accentuate them.
- With C-M_{GT2} ordinary combinatoric background is not only background anymore. It provides mass information to be analyzed.
- Thus, C-M_{CT2} can be a useful tool for every new particle mass measurement in generic complex event topologies.

Back up slides

The event selection cuts were as follows:

- (1) No leptons, no b jets in the event,
- (2) Number of jets = 6, 7 with $P_T^{1\text{st,2nd}} \ge 100 \text{ GeV}$, $P_T^{6\text{th}} \ge 50 \text{ GeV}$,
- (3) $\not\!\!\!E_T \ge 100 \text{ GeV},$
- (4) αⁿ ≥ 0.45 with n(= 1, · · · , 15) for the pairs of selected two jets,

(5)
$$\Delta_T (\equiv |\not\!\!E_T + \Sigma_{j=1,\cdots,6} \mathbf{p}_T^j|) \le 30 \text{ GeV},$$

• IF m_{vis}~ 0, M_{CT2} (x) projection can have significantly amplified endpoint structure (x = Trial missing ptl mass)

•
$$J_{max}(x) \Rightarrow \infty$$
 as $x \Rightarrow 0$

• One can control $J_{max}(x)$ by choosing proper value of x

$$\sigma^{-1} \frac{d\sigma}{dM_{CT}(\chi)} \sim J\sigma^{-1} \frac{d\sigma}{dM_T(\chi)}$$

$$J = \frac{M_{CT}(\chi)}{M_T(\chi)} \frac{(e_X + |\mathbf{p}_{0T}|)^2}{(e_X - |\mathbf{p}_{0T}|)^2}$$

$$\begin{cases} \frac{M_C(\chi)}{M(\chi)} \frac{(E_X + |\mathbf{p}_0|)^2}{(E_X - |\mathbf{p}_0|)^2} & \text{Endpoint region, } J_{max} \\ 1 & \text{Minimum region} \end{cases}$$

• A faint BP(e.g. signal endpoint) with small slope difference amplified by large Jacobian factor :

 $\Delta a \Rightarrow \Delta a^{=} = J_{max}^{2}(x) \Delta a$

With the accentuated BP structure, the fitting scheme (function/range) can be elaborated, and it can significantly reduces the systematic uncertainties in extracting the position of the BPs !

$$\delta_{BP}^{2} \sim \frac{\sigma^{2}}{\Delta a^{2}}$$