CP violating top anomalous couplings at the LHC

Sudhir Kumar Gupta

Phenomenology 2010 Symposium University of Wisconsin, Madison

Collaborators: A S Mete, G Valencia

PRD 80:034013 (0905.1074 [hep-ph])

Tuesday, May 11, 2010

Preliminary

 We know that the current best upper limit on the neutron EDM (nEDM) amount to

$$|d_n| < 2.9 \times 10^{-26} \ e \ . \ cm$$

- A finite nEDM can be explained by the processes that violate CP symmetry.
- Possible contributions to nEDM include the light quark EDM and also its CEDM.

$$\mathcal{L} \sim \frac{e}{2} d_q \bar{q} \sigma_{\mu\nu} \gamma_5 q F^{\mu\nu} + \frac{g_s}{2} \tilde{d}_q \bar{q} \sigma_{\mu\nu} \gamma_5 t_a q G_a^{\mu\nu}$$

contd...

- A direct type of CP violation can be tested in the top sector as it is short-lived and doesn't hadronize.
- At the LHC we will have $\sim 10^7$ top-pairs/year which is mostly (> 90%) due to gluon fusion.
- We study CP violating effects in the top pair production arising due to anomalous couplings at the production as well as the decay level.

Top Pair Production@LHC

• The $t\bar{t}$ production process is modified relative to the SM interaction by the interaction

$$\mathcal{L}_{cdm} = -ig_s \frac{\tilde{d}}{2} \bar{t} \sigma_{\mu\nu} \gamma_5 G^{\mu\nu} t_s$$

Top Decay Vertex

• The most general $t \rightarrow b W^+$ decay vertex can take the following form

 $\Gamma^{\mu}_{Wtb} = -\frac{g}{\sqrt{2}} V^{\star}_{tb} \bar{u}(p_b) \left[\gamma_{\mu} (f_1^L P_L + f_1^R P_R) - i\sigma^{\mu\nu} (p_t - p_b)_{\nu} (f_2^L P_L + f_2^R P_R) \right] u(p_t)$

$$f_1^L = \bar{f}_1^L = 1,$$

 $f_2^R = f e^{i(\phi_f + \delta_f)}, \quad \bar{f}_2^L = f e^{i(-\phi_f + \delta_f)}.$ SM

• which include absorptive phases as well.

The Final Process

– We concentrate on W decaying into muons: $pp \rightarrow t\bar{t} \rightarrow (bW^+)(\bar{b}W^-) \rightarrow (b\mu^+\nu)(\bar{b}\mu^-\bar{\nu})$ - The spin and colored averaged matrix element that contain CP violating correlations is given **by** (O Antipin, G Valencia, PRD 79, 013013 (2009) [arxiv:0807.1295]) $|\mathcal{M}|^2_{CP} = C_1(s,t,u) \mathcal{O}_1 + C_2(s,t,u) \mathcal{O}_2 + C_3(s,t,u) \mathcal{O}_3$ $\mathcal{O}_1 = \epsilon(p_t, p_{\bar{t}}, p_{\mu^+}, p_{\mu^-})$ $\mathcal{O}_2 = (t-u) \epsilon(p_{\mu^+}, p_{\mu^-}, P, q)$ $\mathcal{O}_3 = (t-u) (P \cdot p_{\mu^+} \epsilon(p_{\mu^-}, p_t, p_{\bar{t}}, q) + P \cdot p_{\mu^-} \epsilon(p_{\mu^+}, p_t, p_{\bar{t}}, q))$

- These observables are different spin correlations involved in the process.
- The corresponding counting asymmetries can be defined as

$$A_i \equiv \frac{N_{events}(\mathcal{O}_i > 0) - N_{events}(\mathcal{O}_i < 0)}{N_{events}(\mathcal{O}_i > 0) + N_{events}(\mathcal{O}_i < 0)}$$

• As not all the momenta $(P, q, p_t, p_{\bar{t}})$ can be reconstructed fully at the LHC, we need to modify them with the substitutions

$$p_t \rightarrow p_b + p_{\mu^+} \quad p_{\bar{t}} \rightarrow p_{\bar{b}} + p_{\mu^-}$$
$$P \rightarrow p_b + p_{\mu^+} + p_{\bar{b}} + p_{\mu^-} \quad q \rightarrow \tilde{q} \equiv P_1 - P_2$$

• Modified correlations thus take the form $\tilde{\mathcal{O}}_1 = \epsilon(p_b, p_{\bar{b}}, p_{\mu^+}, p_{\mu^-})$ $\tilde{\mathcal{O}}_2 = \tilde{q} \cdot (p_{\mu^+} - p_{\mu^-}) \epsilon(p_{\mu^+}, p_{\mu^-}, p_b + p_{\bar{b}}, \tilde{q})$ $\tilde{\mathcal{O}}_3 = \tilde{q} \cdot (p_{\mu^+} - p_{\mu^-}) \epsilon(p_b, p_{\bar{b}}, p_{\mu^+} + p_{\mu^-}, \tilde{q})$ In case of CP violation in decay vertex, the color and spin matrix element square takes the following form
(O Antipin, G Valencia, PRD 79, 013013 (2009) [arxiv:0807.1295])
|M|²_T = f sin(φ_f + δ_f) ε(p_t, p_b, p_{ℓ+}, Q_t) + f sin(φ_f - δ_f) ε(p_t, p_b, p_{ℓ-}, Q_t)

– with δ_f and ϕ_f as absorptive and CP-violating phases respectively.

 This contains terms with 3 four momenta from one of the decay vertices, so we find additional correlations

$$egin{aligned} \mathcal{O}_4 &= \epsilon(P, p_b - p_{ar{b}}, p_{\mu^+}, p_{\mu^-}) \ \mathcal{O}_5 &= \epsilon(p_t, p_{ar{t}}, p_b + p_{ar{b}}, p_{\mu^+} - p_{\mu^-}) \ \mathcal{O}_6 &= (t-u)\,\epsilon(P, p_b + p_{ar{b}}, p_{\mu^+} - p_{\mu^-}, q), \end{aligned}$$

Numerical Analysis

- We replaced SM matrix-element square with the new (CPV) one in MADGRAPH.
- The major background for the process is due to $gg \rightarrow b\bar{b}\mu^+\mu^- X$
- With minimal acceptance cuts the cross-sections at the LHC are 4.3 pb and 24 pb for S and B respectively.

After applying (10)

$$p_T(\mu^{\pm}) > 20 \text{ GeV} \quad p_T(b,\bar{b}) > 25 \text{ GeV} |\eta(b,\bar{b},\mu^{\pm})| < 2.5 \quad \Delta R(b\bar{b}) > 0.4.$$
(10)

2.3 pb and 0 pb respectively

Results

-1		A_1	A_2	A_3	A_4	A_5	A_6	cuts
-Vər	$ ilde{d}$	0.1	$-2.2 imes 10^{-2}$	$2.5 imes 10^{-3}$	$-7.4 imes10^{-2}$	4.1×10^{-2}	$-8.4 imes10^{-3}$	Eq. 10
-4 C		0.1	-2.1×10^{-2}	$2.9 imes 10^{-3}$	$-7.5 imes 10^{-2}$	3.6×10^{-2}	$-6.4 imes10^{-3}$	Eqs. 10, 11
× 10	$f\sin\phi_f$	-	-	-	$-5.3 imes10^{-3}$	$-1.6 imes10^{-2}$	$1.6 imes 10^{-2}$	Eq. 10
2		-	-	-	$-5.8 imes 10^{-3}$	$-1.7 imes10^{-2}$	$1.7 imes 10^{-2}$	Eqs. 10, 11

• With 23k events/year the statistical fluctuation $(at \ 3\sigma)$ for the aforementioned asymmetries is $A_{stat} \sim 1.9 \times 10^{-2}$

	$ ilde{A}_1$	$ ilde{A}_2$	$ ilde{A}_3$	cuts
$ ilde{d}$	$5.6 imes 10^{-2}$	$-4.1 imes 10^{-3}$	$1.8 imes 10^{-2}$	Eq. 10
	$5.5 imes10^{-2}$	$-3.5 imes10^{-3}$	$1.8 imes 10^{-2}$	Eqs. 10, 11
$f\sin\phi_f$	-5.4×10^{-3}	$-2.6 imes10^{-2}$	$5.6 imes 10^{-3}$	Eq. 11
	$-6.2 imes10^{-3}$	$-2.7 imes10^{-2}$	$4.0 imes 10^{-3}$	Eqs. 10, 11

TABLE III: Integrated asymmetries without full top momentum reconstruction for \tilde{d} or $f \sin \phi_f$ = 5 × 10⁻⁴ GeV⁻¹ with the cuts defined in Eqs. [10], [11].

LHC sensitivity

• Define,
$$d_t \equiv \tilde{d} m_t$$
, $f_t \equiv f m_t$
 $\tilde{A}_1 = 0.64 d_t - 0.072 f_t \sin \phi_f$
 $\tilde{A}_2 = -0.041 d_t - 0.32 f_t \sin \phi_f$
 $\tilde{A}_3 = 0.21 d_t + 0.047 f_t \sin \phi_f$.

• With one year of LHC run, 5σ sensitivity requires

 $|d_t| \ge 0.05, \quad |\tilde{d}| \ge 3.0 \times 10^{-4} \text{ GeV}^{-1}$ $|f_t \sin \phi_f| \ge 0.10, \quad |f \sin \phi_f| \ge 6.0 \times 10^{-4} \text{ GeV}^{-1}$

Strong interaction phases

• This can be isolated by employing CP-even observables

$$egin{array}{rcl} \mathcal{O}_a &=& ilde{q} \cdot (p_{\mu^+} + p_{\mu^-}) \, \epsilon(p_{\mu^+}, p_{\mu^-}, p_b + p_{\overline{b}}, ilde{q}) \ \mathcal{O}_b &=& ilde{q} \cdot (p_{\mu^+} - p_{\mu^-}) \, \epsilon(p_{\mu^+}, p_{\mu^-}, p_b - p_{\overline{b}}, ilde{q}). \end{array}$$

A_a	A_b	cuts
$4.2 imes 10^{-3}$	$-3.1 imes 10^{-2}$	Eq. 10
$3.0 imes 10^{-3}$	-2.7×10^{-2}	Eqs. 10, 11

- 5σ LHC sensitivity with 1 year data requires, $|f_t \sin \delta_f| \ge 0.10$ $|f \sin \delta_f| \ge 6.0 \times 10^{-4}$.

Summary

- We have estimated asymmetries due to anomalous top quark coupling at both production and decay level.
- LHC sensitivities corresponding to these couplings has also been estimated using the asymmetries.
- We also noted that the true CP phases can be isolated from the strong interacting phases.