

Simultaneous Heavy Flavor Fractions and Top Cross Section Measurement at CDF

Mark Mathis

Mark Mathis – PHENO 2010

May 11th 2010

Motivation for this Method

- The four largest systematic uncertainties in a previous method:
 - Luminosity
 - Can be reduced by normalizing result to Z cross section.
 - ✤ B tagging uncertainty
 - ✤ Jet energy scale
 - Heavy Flavor correction
- Can we use the data to help us with the remaining big systematic uncertainties?

SYSTEMATIC	Δ	Δ%
JET ENERGY SCALE	0.29	4.1
TAGGING	0.39	5.5
MISTAGS	0.17	2.4
HEAVY FLAVOR CORRECTION	0.27	3.8
LUMINOSITY	0.43	6.1
QCD	0.06	0.8
MONTE CARLO GENERATOR	0.21	3.0
INITIAL/FINAL STATE RADIATION	0.06	0.8
LEPTON ID	0.04	0.6
ZO	0.02	0.3
PDF	0.04	0.6
TOTALS	0.76	10.7

CDF Run II Preliminary L = 2.7 fb⁻¹

- ✤ What discriminating variables are available:
 - "Flavor separator" \Rightarrow Distinguish Wbb from Wc/Wcc and W LF
 - N-Jet distribution \Rightarrow Distinguish Top from Wbb

Flavor Separator versus N-Jet Distribution

W-

light jet

≵ light jet

b-tagging: algorithm to identify jets that originated from a b quark

W⁺

B hadron is long lived, so its daughters are displaced from interaction point

Event Selection and QCD

- Apply selection criteria to enhance the signal and suppress the background
- Event selection: Lepton-plus-jets channel
 - $\clubsuit~\geq 1$ Jet (Corrected $E_T \geq 20~GeV$ and ~ $\eta < 2.0$)
 - ♣ 1 Electron or Muon ($ET \ge 20 \text{ GeV}$)
 - Missing transverse energy $\geq 20 \text{ GeV}$
 - ♣ ≥ 1 Jet identified as a *b*-jet
 - ✤ Using 2.7 fb⁻¹ of data
 - ✤ QCD Veto using transverse W mass
 - $m_T^W > 10 \text{ GeV}/c^2$ for muons
 - $m_T^W > 20 \text{ GeV}/c^2$ for electrons
 - Event selection taken as-is, and is *not* optimized for uncertainties.
 - Compare directly to previous method!

- Run Monte Carlo simulations to estimate both signal and background contributions.
 - Top
 - $W + b\bar{b} + jets$
 - $W + c\bar{c} + jets$
 - W + c + jets
 - * $W + q\bar{q} + jets$
 - Single top, di-boson, Z + jets (other Electroweak)
- ✤ QCD background is estimated from data

What Are We Fitting?

What Are We Fitting?

What Are We Fitting?

- ✤ Split events into single and double tags.
- ✤ W + jets no longer treated as a background, but now another signal.
- Everything is fit simultaneously
 - ✤ Top, Wbb, Wcc, Wc, Wqq
 - EW (single top, diboson, etc) and QCD are constrained to calculated/fit cross sections.
 - Unlike previous analysis, different pieces of same templates are tied together.
 - ✤ Jet bins *not* normalized separately.
 - *E.g.*, Except for systematic uncertainties, Top 2-jet 1-tag size tied directly to Top 5-jet 2-tag size.
 - Systematic uncertainties are included in the fit:
 - ✤ *b*-tag and mistag uncertainties
 - ✤ Jet energy scale
 - Q^2 for W + jets
 - ✤ ISR/FSR for top

KIT Flavor Separator output

| χ² / ndf = 88.37 / 94 |

11

N Jet Spectrum

The Fit: N Jet Distribution

CDF Run II Preliminary 2.7 fb⁻¹

*All Scale Factors are relative to QCD predictions

**Systematic shifts are relative to external errors

Kinematic Distributions: H_T

Kinematic Distributions: Missing E_T

Kinematic Distributions: Transverse W Mass

Kinematic Distributions: Lepton P_T

Kinematic Distributions: Jet E_T

Kinematic Distributions: KIT Variables

1

✤ Table of Uncertainties:

CDF Run II Preliminary 2.7 fb ⁻¹				
Uncertainty	Method II	Method III		
Statistical	0.36 pb	0.33 pb		
HF K-Factor	0.27 pb	Inc in stat		
Q^2	Not estimated	0.21 pb		
B Tagging	0.39 pb	0.23 pb	Systematic	
Mistags	0.17 pb	0.08 pb		
JES	0.29 pb	0.29 pb	included in the fit	
ISR/FSR	0.06 pb	0.01 pb		
Parton Showering	0.21 pb	0.11 pb		
QCD Shape	0.06 pb	0.01 pb		
KIT FS Correction	Not estimated	0.10 pb		
PDF	0.04 pb	0.05 pb		
Lepton ID / trigger	0.04 pb	0.05 pb		
ZO	0.02 pb	0.02 pb		
Total without Lumi	0.72 pb	0.57 pb 🗲	- 20% Improvement!	
Luminosity	0.43 pb	0.45 pb		
Total	0.84 pb	0.73 pb		

Mark Mathis – PHENO 2010

Summary

- This is an exciting new technique for measuring the top pair cross section, and has the potential to measure W + HF cross sections as well.
- \clubsuit Measure the top cross section to be

$\sigma_{t\bar{t}} = 7.64 \pm 0.57 \text{ (stat + syst)} \pm 0.45 \text{ (lumi) pb}$

$\sigma_{t\bar{t}} = 7.64 \pm 0.73 \text{ pb}$

- Assumed top mass of 175 Gev/c^2

- Uncertainty decreased by 20% (ignoring luminosity) as compared to a previous analysis using *b*-tagging
- By construction, more data would reduce systematic uncertainties, similarly to statistical uncertainties

Backup Slides

QCD Background Estimation

Use "anti-electrons" to estimate QCD background

The Fitter

- The fitter is a custom-written fitter using Minuit **
 - Binned Poisson Likelihood templates fitter

Systematic Uncertainties

Mark Mathis – PHENO 2010

