

Isolated leptons from heavy flavor decays Theory and Data

Zack Sullivan

Illinois Institute of Technology

Based on Z.S., E. Berger, hep-ph:1003.4997; and PRD **74**, 033008 (06); PRD **78** 034030 (08).

- 1. The Motive
 - Dileptons: $H \rightarrow WW$ vs. leptons from heavy flavors at the LHC (ATLAS)
 - Trileptons: $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ (The "Golden" SUSY channel) vs. leptons from heavy flavors at LHC (CMS)
 - 2. The Physics
 - The underlying physics of isolated leptons from heavy flavors (b/c) \Rightarrow isolation is a band pass filter
 - 3. The Evidence
 - Measurement of $b\bar{b}$ to isolated muons (CDF)
 - 4. The Verdict
 - A new rule-of-thumb: 1/200 of all b/c look like μ or e

Dileptons and trileptons at LHC: Foil: $H \rightarrow WW$ Foil: $\chi_1^{\pm} \chi_2^0$

Z.S., E. Berger, PRD 74, 033008 (2006); and PRD 78, 034030 (2008)

Zack Sullivan, Illinois Institute of Technology – p.3/14

Higgs and SUSY — the main LHC searches!

CDF & DØ, hep-ex/0911.3930, 1001.4162

Experimentalist RULE of THUMB: <u>All</u> jet signals fake leptons at 10^{-4} .

Is this really true? The real physical processes below do not matter?

Isolated leptons from heavy flavors (b/c) in Higgs and SUSY at LHC

Isolated leptons from b/c decay 10–50× other backgrounds.

Isolated leptons from heavy flavors (b/c) in Higgs and SUSY at LHC

Isolated leptons from b/c decay 10–50× other backgrounds.

Solutions

 $p_{Tl_2} > 10 \text{ GeV} \Rightarrow p_{Tl_2} > 20 \text{ GeV}$ $b\overline{b} \rightarrow b\overline{b}/30; S/B \sim 1!$ Z.S., E. Berger, PRD 74, 033008 (06)

Add $\not\!\!\!E_T > 30-40$ GeV, angular cuts $bZ/\gamma \rightarrow bZ/\gamma/40; S/B \sim 1/2!$ Z.S., E. Berger, PRD 78, 034030 (08)

120

The physics of isolated leptons from heavy-flavor decays

Z.S., E. Berger, PRD 78, 034030 (2008); and now arXiv:1003.4997

Physics of isolated muons from b decay

Prob. isolated muon

- = Prob. producing muon \times Prob. *B* remnants missed
- Muons that pass isolation take large fraction of p_{T}
- Many isolated muons point back to primary vertex.
 C. Wolfe, CDF internal
- Isolation leaves ${\sim}7.5\times10^{-3}~\mu/b$ $\gg10^{-4}$ per light jet

Physics of isolated muons from b decay

Prob. isolated muon

- = Prob. producing muon \times Prob. *B* remnants missed
- Muons that pass isolation take large fraction of $\ensuremath{p_T}$
- Many isolated muons point back to primary vertex.
 C. Wolfe, CDF internal
- Isolation leaves ${\sim}7.5\times10^{-3}~\mu/b$ $\gg10^{-4}$ per light jet

Fold in $b\bar{b}$ production.

Old focus: 1/2 of all 10 GeV isolated μ come from threshold, b with $p_{Tb} < 20$ GeV.

It is common for analyses to start simulations with $p_{Tb} > 20$ GeV.

New focus: Isolation acts as a *narrow band-pass filter*!

Isolated muons of a given energy come from *b*s of barely more energy.

Effect of isolation on $H \to WW \to l^+ l^- E_T$

Why does this new background have a hard right edge?

Why NOT this?

Answer: This is a direct consequence of the band-pass filter of isolation cutting off the high- p_T leptons.

 M_T^{lj} (GeV)

Without the filter of isolation, the critical transverse mass distribution would be swamped by QCD background!

With isolation, the background to isolated μ (and e) from heavy flavor (b and c) decays is much softer.

The less well-modeled high- M_T tail of the background is suppressed.

 ${120 \ M_T^{ll}}$ (GeV)

Dimuons from $b\bar{b}$ decays in the CDF data The foil: A Trilepton search at CDF, PRD 79, 052004 (09)

Z.S., E. Berger, arXiv:1003.4997

Zack Sullivan, Illinois Institute of Technology – p.9/14

Searching the data — is this real?

In our dilepton study (PRD **74**, 033008 (06)) we recommended measuring the production of isolated muons from $b\bar{b}$ production by varying isolation cuts to extract the μ_{iso} fraction.

Searching the data — is this real?

In our dilepton study (PRD **74**, 033008 (06)) we recommended measuring the production of isolated muons from $b\bar{b}$ production by varying isolation cuts to extract the μ_{iso} fraction.

That is exactly what CDF has now done!

Region	DY	$_{ m HF}$	Fakes	Diboson	$t\bar{t}$	Total SM expected	SUSY expected	Observed
Control z	6419 ± 709	-	10 ± 11	2.4 ± 0.2	1.18 ± 0.14	6433 ± 712	0.30 ± 0.07	6347
Control A	14820 ± 2242	9344 ± 1612	2294 ± 1148	1.03 ± 0.09	0.12 ± 0.03	26459 ± 1429	0.9 ± 0.2	26295
Control B	217 ± 25	-	9 ± 7	1.7 ± 0.2	0.27 ± 0.05	227 ± 26	0.5 ± 0.1	253
Control C	5770 ± 1043	2238 ± 384	466 ± 234	0.49 ± 0.07	0.02 ± 0.01	8474 ± 857	0.7 ± 0.2	8205
Control D	7.8 ± 1.5	9 ± 4	0.3 ± 0.3	0.21 ± 0.07	4.1 ± 0.4	22 ± 5	1.8 ± 0.4	23
Signal Reg.	169 ± 30	90 ± 20	49 ± 25	6.5 ± 0.4	0.96 ± 0.11	315 ± 37	17 ± 3	297

Conclusion: Leptons from heavy-flavor decays are comparable to Drell-Yan at low M_{ll} and low E_T . CDF, PRD 79, 052004 (2009)

Zack Sullivan, Illinois Institute of Technology – p.10/14

Z.S., E. Berger, arXiv:1003.4997

We feed MadEvent events through PYTHIA and into the same detector simulation we used before to predict a signal for each control region. Our results are normalized to the Z peak. Our DY and $b\bar{b}$ include NLO K-factors.

	CE)F	Our study		
Region	DY	$b\overline{b}$	DY	$b \overline{b}$	
Control Z	6419 ± 709		6419 ± 752		
Control A	14820 ± 2242	9344 ± 1621	14222 ± 1615	5118 ± 584	
Control C	5770 ± 1043	2238 ± 384	4898 ± 584	924 ± 117	

Conclusions:

- We consistently *underestimate* the real background from $b\bar{b}$.
- We believe our results have been conservative.
- Isolated leptons from heavy flavor decays are a significant fraction of ALL low- p_T data samples.

Z.S., E. Berger, arXiv:1003.4997

There is unambiguous evidence of dimuons from $b\overline{b}$ decay in the CDF data.CDF, PRD 79, 052004 (2009)

Isolated leptons (μ or e) from heavy flavor decays (b or c) will play an important role in the extraction of Higgs decays, trilepton SUSY, or any process with modest- p_T leptons.

The band-pass filter effect of isolation allows us to introduce:

<u>A new "rule-of-thumb"</u>

Replace 1/200 of every produced b or c quark with a muon, and 1/200 with an electron having the same momentum as the b or c.

If the resulting background is more than 10% of the signal, it should simulated more carefully, and eventually measured *in situ*.

THANK YOU

.

BACKUPS

Comparing invariant mass distributions

Fig. 6c, CDF, PRD 79, 052004 (2009)

Our distributions

Conclusion: Our shapes are very similar!