# Progress on PDF analysis by CTEQ-TEA group and its implications for the LHC

Hung-Liang Lai

Taipei Municipal University of Education & Michigan State University

in collaboration with J. Huston, M. Guzzi, Z. Li, P. Nadolsky, J. Pumplin, D. Stump, and C.-P. Yuan May 10, 2010

< ロ > < 同 > < 回 > < 回 > .

### **CTEQ-Tung Et Al.: recent activities**

Uncertainty induced by  $\alpha_s$  in the CTEQ-TEA PDF analysis (arXiv:1004.4624)

(*GIXIV: 1004.4024)* 

- NLO general-purpose PDF fits
  - ► CTEQ6.6 set (published in 2008)  $\rightarrow$  CT09  $\rightarrow$  CT10 (to be released)
  - new experimental data, statistical methods, and parametrization forms
- Constraints on new physics (next talk by Marco Guzzi)
- PDFs for Event Generators (arXiv:0910.4183)
- Exploration of statistical aspects (data set diagonalization) and PDF parametrization dependence (Pumplin, arXiv:0909.0268 and 0909.5176)

イロト イ押ト イヨト イヨト

# Uncertainty induced by $\alpha_s$ in the PDF analyses

Questions addressed:

- Two leading theoretical uncertainties in LHC processes are due to α<sub>s</sub> and the PDFs; how can one quantify their correlation?
- ► Which central  $\alpha_s(M_Z)$  and which error on  $\alpha_s(M_Z)$  are to be used with the existing PDFs?
- ▶ What are the consequences for key LHC processes  $(gg \rightarrow H^0, \text{ etc.})$ ?
- recent activities on this issue:
  - **MSTW** (*arXiv:0905.3531*)
  - NNPDF (in 2009 Les Houches Proceedings, arXiv: 1004.0962)
  - H1+ZEUS (arXiv:0911.0884)

・ロト ・ 厚 ト ・ ヨ ト ・ ヨ ト ・

# Our findings (arXiv:1004.4624)

#### Theorem

In the quadratic approximation, the total  $\alpha_s$ +PDF uncertainty  $\Delta X$ , with all correlation, reduces to

$$\Delta X = \sqrt{\Delta X_{PDF}^2 + \Delta X_{\alpha_s}^2},$$

where

- $\Delta X_{PDF}$  is the PDF uncertainty with fixed  $\alpha_s$ , e.g. uncertainty from 44 CTEQ6.6 PDFs with the same  $\alpha_s(M_Z) = 0.118$
- $\Delta X_{\alpha_s} = (X_{high} X_{low})/2$  is the  $\alpha_s$  uncertainty computed with upper/lower  $\alpha_s$  PDFs, e.g. CTEQ6.6AS PDFs for  $\alpha_s(M_Z) = 0.120$  and 0.116

Back-up slides: The main idea illustrated; key cross sections tabulated The full proof is given in the paper

Hung-Liang Lai (TMUE & MSU)

Pheno 2010

# CT10 analysis (in progress)

#### **Experimental data**

- Combined HERA-1 neutral-current and charged-current DIS data with 114 correlated systematic effects (see Guzzi's talk)
  - replaces 11 separate HERA-1 sets used in the CTEQ6.6 fit
- CDF Run-2 and D0 Run-2 inclusive jet production
- Tevatron Run-2 Z rapidity distributions from both CDF and D0
- W electron asymmetry from CDF II and D0 II; W muon asymmetry from D0 II (CT10W set)
- Other data sets inherited from CTEQ6.6

- 4 同 ト 4 三 ト

# CT10 analysis (in progress)

#### **Developments in techniques**

- Experimental normalizations N<sub>i</sub> are treated on the same footing as other correlated systematic errors
- Set all data weights of 1, unless otherwise specified
- Require 90% CL for each experiment dynamically
- More flexible (i.e. less biased) parametrizations for  $g(x, Q_0)$ ,  $d(x, Q_0)$ , and  $s(x, Q_0)$
- Apply soft constraint on  $R_s = \lim_{x \to 0} \left( s(x) + \bar{s}(x) \right) / \left( \bar{u}(x) + \bar{d}(x) \right)$  which has little information from current data

イロト イ押ト イヨト イヨト

#### More flexible parametrizations CT10(green) vs. CTEQ6.6(blue); PRELIMINARY



g at Q=2 GeV

g(x,Q): large uncertainty at  $x < 10^{-3}$ , despite tighter constraints by the combined HERA data

s(x,Q): wider uncertainty, covers both CTEQ6.6 and MSTW'08

## Agreement between data sets

- Good overall agreement:  $\chi^2/d.o.f. = 1.1$  (out of ~2800 data points)
- Noticable observations on the quality of the fit:
  - Tevatron single-inclusive jet production: Run-1 and Run-2 sets are moderately compatible (arXiv:0904.2424)
  - Tevatron Run-2 Z rapidity: D0 well described; CDF acceptable (higher stat.)
  - Tevatron Run-2 W lepton asymmetry
    - $\diamond$  is precise; constrains d(x)/u(x) at  $x \to 1$
    - $\diamond$  apparently disagrees with existing constraints on d/u, mainly provided by the NMC  $F_2^d/F_2^p$  and Run-1 W lepton asymmetry data; minor tension against BCDMS  $F_2^d$  data

・ロト ・ 同ト ・ ヨト ・ ヨト - - ヨ

## Agreement between data sets

- Reaonable fits to electron (e) asymmetry data are possible without NMC and BCDMS; and vice versa
- No acceptable fit to D0 II e asymmetry and NMC/BCDMS data can be achieved, if they are included on the same footing
- **Tension** between Run-2 e asymmetry and  $\mu$  asymmetry
- Good agreement between Run-2 *e W* asymmetry data and *Z* y data
- With special emphasis on D0 II *e* asymmetry data (weight>1), it is possible to obtain a reasonable agreement for *W* asymmetry ( $\chi^2/d.o.f. = 1 - 2$ ), with some remaining tension with NMC & BCDMS data, especially at x > 0.4



Two series of PDFs are produced:

- ▶ CT10: no D0 Run-2 W asymmetry data are included
- CT10W: include D0 Run-2 W asymmetry, with an extra weight

# CT10 and CT10W fits with Tevatron Run-2 data

#### PRELIMINARY



CT10W agrees better with W asy data; has smaller uncertainty than CTEQ6.6 or CT10

Hung-Liang Lai (TMUE & MSU)

d(x,Q)/u(x,Q) at Q = 85 GeV



CT10W prefers larger d/u, has smaller uncertainty than CTEQ6.6 or CT10

## CT10 & CT10W predictions for the LHC & Tevatron





A B > A B >

PRELIMINARY

-

# CT10 & CT10W predictions for the LHC



CT10W Uncertainty (red) is clearly smaller than that of CT10 & CTEQ6.6.



CT10 (green) & CT10W (red) uncertainties in central *y* region are larger than that of CTEQ6.6 (blue), mainly due to larger uncertainty on *s* distribution.

## Summary I

#### CTEQ6.6AS PDF sets (available in the LHAPDF library):

from 4 alternative CTEQ6.6 fits for

 $\alpha_s(M_Z) = 0.116, .117, .119, .120$ 

- sufficient to compute uncertainty in  $\alpha_s(M_Z)$  at  $\approx$ 68% and 90% C. L., including the world-average  $\alpha_s(M_Z) = 0.118 \pm 0.002$  as an input data point
- **The CTEQ6.6AS**  $\alpha_s$  uncertainty should be combined with the CTEQ6.6 PDF uncertainty as

$$\Delta X = \sqrt{\Delta X_{CTEQ6.6}^2 + \Delta X_{CTEQ6.6AS}^2}$$

The total uncertainty  $\Delta X$  reproduces the full correlation between  $\alpha_s(M_Z)$  and PDFs, also applicable to CT10 family and future PDFs.

Hung-Liang Lai (TMUE & MSU)

## Summary II

#### Tevatron Run-2 W asymmetry data...

...become increasingly complete and precise (measurements by both CDF and D0; electron and muon channels)

...cannot be explained based on the d/u ratio provided by the previously existing data

Several cross checks of the theoretical calculation for W asymmetry; no problems were found

Higher-twist and nuclear corrections in the large-x BCDMS/NMC deuterium data are the usual suspects

(Virchaux and Milsztajn; Alekhin; Accardi et al.)

CT10 and CT10W sets of PDFs for practical applications, without and with constraints from the D0 Run-2 W asymmetry

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

### **Backup slides**

Hung-Liang Lai (TMUE & MSU)

₹ 9Q@

イロト イポト イヨト イヨト

## Illustration of the theorem for 2 parameters



A B > A B >

### Illustration of the theorem for 2 parameters, cont.



$$\Delta X^{2} = \frac{1}{4} \left[ (X(A) - X(C))^{2} + (X(B) - X(D))^{2} \right]$$
  
=  $\Delta X_{1}^{2} + \Delta X_{2}^{2}$ 

# Full and reduced fits with variable $\alpha_s$ : cross sections

| Process                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CTEQ6.6+CTEQ6.6AS                                                                                              |                                                                                                                                              |                                                                                                                                                 |                                                                                                                         | CTEQ6.6FAS                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $t\overline{t}$ (171 GeV)                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\sigma_0$                                                                                                     | $\Delta \sigma_{PDF}$                                                                                                                        | $\Delta \sigma_{\alpha_S}$                                                                                                                      | $\Delta \sigma$                                                                                                         | $\sigma_0 \pm \Delta \sigma$                                                                                                                                                                     |
| LHC 7 TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 157.41                                                                                                         | 10.97                                                                                                                                        | 7.54                                                                                                                                            | 13.31                                                                                                                   | $160.10 \pm 13.93$                                                                                                                                                                               |
| LHC 10 TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 396.50                                                                                                         | 18.75                                                                                                                                        | 16.10                                                                                                                                           | 24.71                                                                                                                   | $400.48 \pm 25.74$                                                                                                                                                                               |
| LHC 14 $TeV$                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 877.19                                                                                                         | 28.79                                                                                                                                        | 30.78                                                                                                                                           | 42.15                                                                                                                   | $881.62 \pm 44.27$                                                                                                                                                                               |
| $gg \to H \ (120 \ {\rm GeV})$                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\sigma_0$                                                                                                     | $\Delta \sigma_{PDF}$                                                                                                                        | $\Delta \sigma_{\alpha_S}$                                                                                                                      | $\Delta \sigma$                                                                                                         | $\sigma_0 \pm \Delta \sigma$                                                                                                                                                                     |
| Tevatron 1.96 TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.63                                                                                                           | 0.042                                                                                                                                        | 0.032                                                                                                                                           | 0.053                                                                                                                   | $0.64 \pm 0.055$                                                                                                                                                                                 |
| LHC 7 TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.70                                                                                                          | 0.31                                                                                                                                         | 0.32                                                                                                                                            | 0.45                                                                                                                    | $10.70\pm0.48$                                                                                                                                                                                   |
| LHC 10 TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20.33                                                                                                          | 0.66                                                                                                                                         | 0.56                                                                                                                                            | 0.87                                                                                                                    | $20.28 \pm 0.93$                                                                                                                                                                                 |
| LHC 14 TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35.75                                                                                                          | 1.31                                                                                                                                         | 0.94                                                                                                                                            | 1.61                                                                                                                    | $35.63 \pm 1.70$                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                |                                                                                                                                              |                                                                                                                                                 |                                                                                                                         |                                                                                                                                                                                                  |
| $gg \to H \ (160 \ {\rm GeV})$                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\sigma_0$                                                                                                     | $\Delta \sigma_{PDF}$                                                                                                                        | $\Delta \sigma_{\alpha_S}$                                                                                                                      | $\Delta \sigma$                                                                                                         | $\sigma_0 \pm \Delta \sigma$                                                                                                                                                                     |
| $gg \rightarrow H (160 \text{ GeV})$<br>Tevatron 1.96 TeV                                                                                                                                                                                                                                                                                                                                                                                                                            | $\sigma_0$<br>0.26                                                                                             | $\Delta \sigma_{PDF}$<br>0.026                                                                                                               | $\Delta \sigma_{\alpha_S}$<br>0.015                                                                                                             | $\Delta \sigma$<br>0.030                                                                                                | $\sigma_0 \pm \Delta \sigma$ $0.26 \pm 0.031$                                                                                                                                                    |
| $\begin{array}{c} gg \rightarrow H \ (160 \ {\rm GeV}) \\ \hline {\rm Tevatron} \ 1.96 \ {\rm TeV} \\ \hline {\rm LHC} \ 7 \ {\rm TeV} \end{array}$                                                                                                                                                                                                                                                                                                                                  | $\sigma_0$<br>0.26<br>5.86                                                                                     | $\begin{array}{c} \Delta \sigma_{PDF} \\ 0.026 \\ 0.16 \end{array}$                                                                          | $\Delta \sigma_{\alpha_S} = 0.015 = 0.18$                                                                                                       | $\begin{array}{c} \Delta \sigma \\ 0.030 \\ 0.24 \end{array}$                                                           | $\begin{aligned} \sigma_0 \pm \Delta \sigma \\ 0.26 \pm 0.031 \\ 5.88 \pm 0.26 \end{aligned}$                                                                                                    |
| $ \begin{array}{c} gg \rightarrow H \ (160 \ {\rm GeV}) \\ \hline {\rm Tevatron} \ 1.96 \ {\rm TeV} \\ \hline {\rm LHC} \ 7 \ {\rm TeV} \\ \hline {\rm LHC} \ 10 \ {\rm TeV} \\ \end{array} $                                                                                                                                                                                                                                                                                        | $\sigma_0$<br>0.26<br>5.86<br>11.73                                                                            | $\Delta \sigma_{PDF} = 0.026 = 0.16 = 0.33$                                                                                                  | $\Delta \sigma_{\alpha_S} = 0.015 = 0.18 = 0.33$                                                                                                | $\Delta \sigma$<br>0.030<br>0.24<br>0.47                                                                                | $\begin{aligned} & \sigma_0 \pm \Delta \sigma \\ & 0.26 \pm 0.031 \\ & 5.88 \pm 0.26 \\ & 11.72 \pm 0.50 \end{aligned}$                                                                          |
| $ \begin{array}{c} gg \rightarrow H \; (160 \; {\rm GeV}) \\ \hline {\rm Tevatron} \; 1.96 \; {\rm TeV} \\ \hline {\rm LHC} \; 7 \; {\rm TeV} \\ \hline {\rm LHC} \; 10 \; {\rm TeV} \\ \hline {\rm LHC} \; 14 \; {\rm TeV} \\ \end{array} $                                                                                                                                                                                                                                         | $\sigma_0$<br>0.26<br>5.86<br>11.73<br>21.48                                                                   | $\Delta \sigma_{PDF}$<br>0.026<br>0.16<br>0.33<br>0.68                                                                                       | $\Delta \sigma_{\alpha_S}$<br>0.015<br>0.18<br>0.33<br>0.56                                                                                     | $\Delta \sigma$<br>0.030<br>0.24<br>0.47<br>0.88                                                                        | $\begin{aligned} \sigma_0 \pm \Delta \sigma \\ 0.26 \pm 0.031 \\ 5.88 \pm 0.26 \\ 11.72 \pm 0.50 \\ 21.43 \pm 0.94 \end{aligned}$                                                                |
| $\begin{array}{c} gg \rightarrow H \ (160 \ {\rm GeV}) \\ \hline {\rm Tevatron} \ 1.96 \ {\rm TeV} \\ \hline {\rm LHC} \ 7 \ {\rm TeV} \\ \hline {\rm LHC} \ 10 \ {\rm TeV} \\ \hline {\rm LHC} \ 10 \ {\rm TeV} \\ \hline {\rm LHC} \ 14 \ {\rm TeV} \\ \hline gg \rightarrow H \ (250 \ {\rm GeV}) \end{array}$                                                                                                                                                                    | $ \begin{array}{c} \sigma_0 \\ 0.26 \\ 5.86 \\ 11.73 \\ 21.48 \\ \sigma_0 \end{array} $                        | $\begin{array}{c} \Delta \sigma_{PDF} \\ 0.026 \\ 0.16 \\ 0.33 \\ 0.68 \\ \Delta \sigma_{PDF} \end{array}$                                   | $\Delta \sigma_{\alpha_S}$<br>0.015<br>0.18<br>0.33<br>0.56<br>$\Delta \sigma_{\alpha_S}$                                                       | $\Delta \sigma$<br>0.030<br>0.24<br>0.47<br>0.88<br>$\Delta \sigma$                                                     | $\begin{aligned} & \sigma_0 \pm \Delta \sigma \\ & 0.26 \pm 0.031 \\ & 5.88 \pm 0.26 \\ & 11.72 \pm 0.50 \\ & 21.43 \pm 0.94 \\ & \sigma_0 \pm \Delta \sigma \end{aligned}$                      |
| $\begin{array}{c} gg \rightarrow H \; (160 \; {\rm GeV}) \\ \hline {\rm Tevatron} \; 1.96 \; {\rm TeV} \\ \hline {\rm LHC} \; 7 \; {\rm TeV} \\ \hline {\rm LHC} \; 10 \; {\rm TeV} \\ \hline {\rm LHC} \; 14 \; {\rm TeV} \\ \hline gg \rightarrow H \; (250 \; {\rm GeV}) \\ \hline {\rm Tevatron} \; 1.96 \; {\rm TeV} \end{array}$                                                                                                                                               | $\begin{array}{c} \sigma_0 \\ 0.26 \\ 5.86 \\ 11.73 \\ 21.48 \\ \sigma_0 \\ 0.055 \end{array}$                 | $\begin{array}{c} \Delta \sigma_{PDF} \\ 0.026 \\ 0.16 \\ 0.33 \\ 0.68 \\ \Delta \sigma_{PDF} \\ 0.0099 \end{array}$                         | $\begin{array}{c} \Delta \sigma_{\alpha_{S}} \\ 0.015 \\ 0.18 \\ 0.33 \\ 0.56 \\ \Delta \sigma_{\alpha_{S}} \\ 0.0044 \end{array}$              | $\Delta \sigma$<br>0.030<br>0.24<br>0.47<br>0.88<br>$\Delta \sigma$<br>0.011                                            | $\begin{aligned} & \sigma_0 \pm \Delta \sigma \\ & 0.26 \pm 0.031 \\ & 5.88 \pm 0.26 \\ & 11.72 \pm 0.50 \\ & 21.43 \pm 0.94 \\ & \sigma_0 \pm \Delta \sigma \\ & 0.058 \pm 0.012 \end{aligned}$ |
| $\begin{array}{c} gg \rightarrow H \; (160 \; {\rm GeV}) \\ \hline {\rm Tevatron} \; 1.96 \; {\rm TeV} \\ \hline {\rm LHC} \; 7 \; {\rm TeV} \\ \hline {\rm LHC} \; 10 \; {\rm TeV} \\ \hline {\rm LHC} \; 14 \; {\rm TeV} \\ \hline gg \rightarrow H \; (250 \; {\rm GeV}) \\ \hline {\rm Tevatron} \; 1.96 \; {\rm TeV} \\ \hline {\rm LHC} \; 7 \; {\rm TeV} \\ \end{array}$                                                                                                      | $\begin{array}{c} \sigma_0 \\ 0.26 \\ 5.86 \\ 11.73 \\ 21.48 \\ \sigma_0 \\ 0.055 \\ 2.30 \end{array}$         | $\begin{array}{c} \Delta \sigma_{PDF} \\ 0.026 \\ 0.16 \\ 0.33 \\ 0.68 \\ \Delta \sigma_{PDF} \\ 0.0099 \\ 0.085 \end{array}$                | $\begin{array}{c} \Delta \sigma_{\alpha_{S}} \\ 0.015 \\ 0.18 \\ 0.33 \\ 0.56 \\ \Delta \sigma_{\alpha_{S}} \\ 0.0044 \\ 0.081 \end{array}$     | $\begin{array}{c} \Delta \sigma \\ 0.030 \\ 0.24 \\ 0.47 \\ 0.88 \\ \Delta \sigma \\ 0.011 \\ 0.12 \end{array}$         | $\begin{array}{c} \sigma_{0}\pm\Delta\sigma\\ 0.26\pm0.031\\ 5.88\pm0.26\\ 11.72\pm0.50\\ 21.43\pm0.94\\ \sigma_{0}\pm\Delta\sigma\\ 0.058\pm0.012\\ 2.32\pm0.12\\ \end{array}$                  |
| $\begin{array}{c} gg \rightarrow H \ (160 \ {\rm GeV}) \\ \hline {\rm Tevatron} \ 1.96 \ {\rm TeV} \\ \hline {\rm LHC} \ 7 \ {\rm TeV} \\ \hline {\rm LHC} \ 10 \ {\rm TeV} \\ \hline {\rm LHC} \ 14 \ {\rm TeV} \\ \hline gg \rightarrow H \ (250 \ {\rm GeV}) \\ \hline {\rm Tevatron} \ 1.96 \ {\rm TeV} \\ \hline {\rm LHC} \ 7 \ {\rm TeV} \\ \hline {\rm LHC} \ 7 \ {\rm TeV} \\ \hline {\rm LHC} \ 10 \ {\rm TeV} \\ \hline {\rm LHC} \ 10 \ {\rm TeV} \\ \hline \end{array}$ | $\begin{array}{c} \sigma_0 \\ 0.26 \\ 5.86 \\ 11.73 \\ 21.48 \\ \sigma_0 \\ 0.055 \\ 2.30 \\ 5.08 \end{array}$ | $\begin{array}{c} \Delta \sigma_{PDF} \\ 0.026 \\ 0.16 \\ 0.33 \\ 0.68 \\ \hline \Delta \sigma_{PDF} \\ 0.0099 \\ 0.085 \\ 0.14 \end{array}$ | $\begin{array}{c} \Delta \sigma_{\alpha_S} \\ 0.015 \\ 0.18 \\ 0.33 \\ 0.56 \\ \Delta \sigma_{\alpha_S} \\ 0.0044 \\ 0.081 \\ 0.15 \end{array}$ | $\begin{array}{c} \Delta \sigma \\ 0.030 \\ 0.24 \\ 0.47 \\ 0.88 \\ \Delta \sigma \\ 0.011 \\ 0.12 \\ 0.21 \end{array}$ | $\begin{array}{c} \sigma_{0}\pm\Delta\sigma\\ 0.26\pm0.031\\ 5.88\pm0.26\\ 11.72\pm0.50\\ 21.43\pm0.94\\ \sigma_{0}\pm\Delta\sigma\\ 0.058\pm0.012\\ 2.32\pm0.12\\ 5.10\pm0.22\\ \end{array}$    |

The full (CTEQ6.6FAS) and reduced (CTEQ6.6+CTEQ6.6AS) methods perfectly agree