| p Polarization | Top Production at LHC | Results | Summary |
|----------------|-----------------------|---------|---------|
|                |                       | 000     |         |
|                |                       |         |         |

### Single slepton with polarized tops at LHC

### Santosh Kumar Rai

Oklahoma State University

### PHENO 2010

arXiv:1003.4708 (submitted to JHEP)

M.Arai, K.Huitu, SKR, K. Rao

Santosh Kumar Rai

| Motivation | Top Polarization | Top Production at LHC | <b>Results</b><br>000<br>00<br>00 |  |
|------------|------------------|-----------------------|-----------------------------------|--|
|            |                  |                       |                                   |  |
|            |                  |                       |                                   |  |







- Top Production at LHC
- 4 Results
  - Slepton Decay and Final State Particles
  - Signal Analysis
  - Kinematic Distributions



| Motivation | Top Polarization | Top Production at LHC | <b>Results</b><br>000<br>00<br>00 |  |
|------------|------------------|-----------------------|-----------------------------------|--|
|            |                  |                       |                                   |  |
|            |                  |                       |                                   |  |



• In most supersymmetric models a discrete multiplicative symmetry called R-parity is imposed on the Lagrangian:

 $R_p = (-1)^{3B+L+2S}$ 

with spin S, baryon number B, and lepton number L.

| Motivation | Top Polarization | Top Production at LHC | Results<br>000<br>00<br>00 |  |
|------------|------------------|-----------------------|----------------------------|--|
|            |                  |                       |                            |  |
|            |                  |                       |                            |  |
| Momu       | TION             |                       |                            |  |

• The most general superpotential in SUSY contains the following bilinear and trilinear terms, which do not conserve either *B* or *L*:

$$\mathcal{W}_{RPV} = \frac{1}{2} \lambda_{ijk} \hat{L}_i \hat{L}_j \hat{E}_k + \lambda'_{ijk} \hat{L}_i \hat{Q}_j \hat{D}_k + \frac{1}{2} \lambda''_{ijk} \hat{U}_i \hat{D}_j \hat{D}_k + \mu_i \hat{L}_i \hat{H}_2$$

- R-parity violation leads to single SUSY particle exchanges in various subprocesses.
  - assume baryon number conservation
  - strong constraints on the couplings from experiments

Santosh Kumar Rai

Single slepton with polarized tops at LHC

JIIVAIIUJN

| Motivation | Top Polarization | Top Production at LHC | Results<br>000<br>00<br>00 |  |
|------------|------------------|-----------------------|----------------------------|--|
|            |                  |                       |                            |  |
|            |                  |                       |                            |  |
| Motiva     | ATION            |                       |                            |  |

- The top quark spin is observable through its decay products.
  - decays before it can hadronize
  - polarization properties can prove an added observable at experiments
- R-parity violation gives new production mechanism for top quark.
  - different chiral structure in the interaction vertex for R-parity violating SUSY contribution
  - Would affect the polarization properties of the top quark

| Motivation | Top Polarization | Top Production at LHC | Results<br>000<br>00<br>00 |  |
|------------|------------------|-----------------------|----------------------------|--|
|            |                  |                       |                            |  |

# TOP POLARIZATION

- The spin information of the top
  - depends on its production process
  - reflected in angular distribution of its decay products
- The dominant decay of top quark in the SM

 $t \to bW^+$  $\hookrightarrow \ \ell^+ \nu_\ell, u\bar{d}, c\bar{s}$ 

Santosh Kumar Rai

| Motivation | Top Polarization | Top Production at LHC | Results<br>000<br>00<br>00 |  |
|------------|------------------|-----------------------|----------------------------|--|
|            |                  |                       |                            |  |

# TOP POLARIZATION

• The angular distribution of a fermion *f* for a top quark ensemble in the top rest frame:

$$\frac{1}{\Gamma_f} \frac{\mathrm{d}\Gamma_f}{\mathrm{d}\cos\theta_f} = \frac{1}{2} (1 + \kappa_f P_t \cos\theta_f)$$

- $\kappa_f$  defines the spin analysing power
- $\theta_f$  is the angle between the direction of the motion of decay fermion f and the top spin vector, in the top rest frame
- The degree of polarization  $P_t$  is defined as

$$P_t = rac{N_{\uparrow} - N_{\downarrow}}{N_{\uparrow} + N_{\downarrow}}$$

| Motivation | Top Polarization | Top Production at LHC | Results<br>000<br>00<br>00 |  |
|------------|------------------|-----------------------|----------------------------|--|
|            |                  |                       | 00                         |  |

### TOP PRODUCTION IN SM

- The dominant modes of top quark production at the LHC
  - $t\overline{t}$ ,  $t\overline{b}$  and  $tW^-$
  - $\gamma^{\mu}(1-\gamma_5)$  coupling
  - $P_t(t\bar{t}) \sim -10^{-4}, \ P_t(t\bar{b}) \sim -0.68, \ P_t(tW^-) \sim -0.25$



| Motivation Top Folanzation | Top Production at LHC | Results | Summary |
|----------------------------|-----------------------|---------|---------|
|                            |                       |         |         |
|                            |                       | 00      |         |
|                            |                       | 00      |         |

### TOP-SLEPTON PRODUCTION AT LHC

• The parton level process is given through the interaction term  $\lambda'_{i3k}\widetilde\ell_{iL}\vec d_{kR}u_{3L}$ 

$$g(p_1) \ d_k(p_2) \rightarrow t(p_3, \lambda_t) \ \widetilde{\ell}^-_{iL}(p_4),$$

• Interaction vertex  $\sim P_R = \frac{1}{2}(1 + \gamma_5)$ 







Santosh Kumar Rai

Oklahoma State University

| Motivation | Top Polarization | Top Production at LHC | <b>Results</b><br>000<br>00<br>00 |  |
|------------|------------------|-----------------------|-----------------------------------|--|
|            |                  |                       |                                   |  |

- The large difference in the asymmetry from SM can prove to be useful in distinguishing its signals from the SM.
- The lepton from the top decay is the most efficient spin analyzer with  $\kappa_{\ell^+}=1$
- The difference in produced top's polarization ⇒ distinct correlations in kinematic variables
- We use the MadGraph+MadEvent package to generate and study the final state kinematics.

|                                         | Motivation            | Top Polarization   | Top Production at LHC | Results<br>●00<br>○0 |  |
|-----------------------------------------|-----------------------|--------------------|-----------------------|----------------------|--|
| Slepton Decay and Final State Particles | Slepton Decay and Fir | al State Particles |                       |                      |  |

### DECAY MODES FOR SLEPTON

The slepton decays to the following final states

$$\begin{split} &\widetilde{\ell}_{iL}^{-} \to \ell_{i}^{-} \widetilde{\chi}_{j}^{0}, \quad \widetilde{\ell}_{iL}^{-} \to \nu_{\ell_{i}} \widetilde{\chi}_{j}^{-}, \\ &\widetilde{\ell}_{iL}^{-} \to \overline{t} d_{k} \quad \text{(via RPV coupling)} \\ &\widetilde{\chi}_{1}^{0} \to \nu_{i} b \overline{d}_{k}, \quad \overline{\nu}_{i} \overline{b} d_{k} \end{split}$$

| $\lambda'_{131}$ | $0.019	imes(m_{	ilde{t}_L}/100~GeV)$  | $\lambda'_{132}$ | $0.28 	imes (m_{	ilde{t}_L}/100~GeV)$ |
|------------------|---------------------------------------|------------------|---------------------------------------|
| $\lambda'_{231}$ | $0.18 	imes (m_{	ilde{b}_L}/100~GeV)$ | $\lambda'_{232}$ | $0.45 	imes (m_{	ilde{s}_R}/100~GeV)$ |
| $\lambda'_{i33}$ | $\mathcal{O}(10^{-4})$                |                  |                                       |

Santosh Kumar Rai

| Motivation        | Top Polarization      | Top Production at LHC | Results<br>0●0<br>00<br>00 |  |
|-------------------|-----------------------|-----------------------|----------------------------|--|
| Slepton Decay and | Final State Particles |                       |                            |  |

### MODEL INPUTS

#### Representative points in the MSSM parameter space

| Parameters                                                 | I          | П          |  |
|------------------------------------------------------------|------------|------------|--|
| $(M_1, M_2)$                                               | (100, 300) | (100, 500) |  |
| $A_i$                                                      | -1000      | -1500      |  |
| ( $\mu, \hspace{0.1 cm} 	an eta$ )                         | (250, 10)  | (600, 5)   |  |
| $(M_{\ell L}, M_{\ell R})$                                 | (200, 200) | (500, 500) |  |
| $(M_{\widetilde{\chi}_1^0}, \ M_{\widetilde{\chi}_1^\pm})$ | (93, 218)  | (97, 478)  |  |
| $(m_{\widetilde{\ell}L}, m_{\widetilde{\ell}R})$           | (205, 205) | (502, 502) |  |
| $m_{\tilde{\nu}L}$                                         | 190        | 496        |  |
| $\lambda'_{231}$                                           | 0.2        | 0.5        |  |

Santosh Kumar Rai

| Motivation        | Top Polarization      | Top Production at LHC | Results<br>00●<br>00<br>00 |  |
|-------------------|-----------------------|-----------------------|----------------------------|--|
| Slepton Decay and | Final State Particles |                       |                            |  |

#### Possible combinations in the final st

- t decays to 1 b-jet and 2 light jets and µ̃<sub>L</sub> decays to a t̄ and d quark ⇒ 2b-jets + 5J (t̄ decays hadronically)
   ⇒ ℓ<sub>i</sub><sup>-</sup> + 2b-jets + 2J + ∉<sub>T</sub> (t̄ decays semileptonically)

| Motivation  | Top Polarization                                        | Top Production at LHC                                                                                         | Results<br>○○○<br>○○ | Summary |
|-------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------|---------|
| Signal Anal | ysis                                                    |                                                                                                               |                      |         |
|             |                                                         | Our choice                                                                                                    |                      |         |
|             | pp —                                                    | $\rightarrow \mu^- e^+ b\bar{b} + \not\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ |                      |         |
|             |                                                         | Selection Cuts                                                                                                |                      |         |
|             | • $p_{\mathcal{T}}^{\ell} > 10$ GeV and $ \eta^{\ell} $ | < 2.5.                                                                                                        |                      |         |
|             | • $p_T^b > 20$ GeV and $ \eta^b $                       | < 2.5.                                                                                                        |                      |         |
|             | • A minimum missing tra                                 | ansverse energy, $\not\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$               | ) GeV.               |         |

• To resolve the final state particles:  $\Delta R_{\ell_i\ell_j} > 0.2, \Delta R_{\ell b} > 0.4 \text{ and } \Delta R_{bb} > 0.7$ where  $\Delta R_{AB} = \sqrt{\Delta \phi_{AB}^2 + \Delta \eta_{AB}^2}$ .

### SM background

 $t\bar{t}$  and Triple gauge boson production

Santosh Kumar Rai

Oklahoma State University

| Motivation      | Top Polarization | Top Production at LHC | Results<br>○○○<br>○○ |  |
|-----------------|------------------|-----------------------|----------------------|--|
| Signal Analysis |                  |                       |                      |  |

$$BR(\widetilde{\mu}_L \to \mu \widetilde{\chi}_1^0) = 0.76, \quad BR(\widetilde{\mu}_L \to \overline{t}d) = 0.24 \quad (m_{\widetilde{\mu}_L} = 205 \ GeV),$$
  
$$BR(\widetilde{\mu}_L \to \mu \widetilde{\chi}_1^0) = 0.09, \quad BR(\widetilde{\mu}_L \to \overline{t}d) = 0.90 \quad (m_{\widetilde{\mu}_L} = 502 \ GeV).$$

### Cross sections

|                                                     | $\sqrt{s} = 7$ TeV | $\sqrt{s} = 14$ TeV |
|-----------------------------------------------------|--------------------|---------------------|
| $m_{\widetilde{\mu}_L}=205~{ m GeV}~(\lambda'=0.2)$ | 6 fb               | 19 fb               |
| $m_{\widetilde{\mu}_L}=502	ext{GeV}(\lambda'=0.5)$  | 12 fb              | 69 fb               |
| SM                                                  | 208 fb             | 1.08 pb             |

Santosh Kumar Rai

Oklahoma State University

| Motivation           | Top Polarization | Top Production at LHC | Results<br>○○○<br>●○ |  |
|----------------------|------------------|-----------------------|----------------------|--|
| Kinematic Distributi | ons              |                       |                      |  |



Santosh Kumar Rai

| Motivation            | Top Polarization | Top Production at LHC | Results<br>○○○<br>●○ |  |
|-----------------------|------------------|-----------------------|----------------------|--|
| King the Distribution |                  |                       |                      |  |

### Kinematic Distributions

•  $\Delta \phi_{b_1 e}$ 



Santosh Kumar Rai

| Motivation              | Top Polarization | Top Production at LHC | Results<br>○○○<br>○○ |  |
|-------------------------|------------------|-----------------------|----------------------|--|
| Kinematic Distributions |                  |                       |                      |  |

- $\Delta \phi_{b_1 e}$
- $\cos \theta_{b_1\mu}^*$  (angle of  $\mu$  with  $\vec{p}_{\mu} + \vec{p}_{b_1}$ in the rest frame of  $[b_1\mu]$ )

| Motivation            | Top Polarization | Top Production at LHC | Results | Summary |
|-----------------------|------------------|-----------------------|---------|---------|
|                       |                  |                       | 000     |         |
|                       |                  |                       | 00      |         |
|                       |                  |                       | •0      |         |
| King the Distribution | at a sec         |                       |         |         |

# Kinematic Distributions

- $\Delta \phi_{b_1 e}$
- $\cos \theta^*_{b_1\mu}$  (angle of  $\mu$  with  $\vec{p}_{\mu} + \vec{p}_{b_1}$ in the rest frame of  $[b_1\mu]$ )



| Motivation         | Top Polarization | Top Production at LHC | Results | Summary |
|--------------------|------------------|-----------------------|---------|---------|
|                    |                  |                       |         |         |
|                    |                  |                       | 00      |         |
|                    |                  |                       | 00      |         |
| Kinematic Distribu | tions            |                       |         |         |

# • $\cos \theta^*_{b_1 \mu}$

### comparison with decay from

anti-top

Santosh Kumar Rai

| Motivation              | Top Polarization | Top Production at LHC | Results<br>○○○<br>○● |  |
|-------------------------|------------------|-----------------------|----------------------|--|
| Kinematic Distributions |                  |                       |                      |  |

•  $\cos \theta^*_{b_1 \mu}$ comparison with decay from anti-top



Santosh Kumar Rai

| Motivation | Top Polarization | Top Production at LHC | <b>Results</b><br>000<br>00<br>00 | Summary |
|------------|------------------|-----------------------|-----------------------------------|---------|
|            |                  |                       |                                   |         |

#### SUMMARY

- The top spin can prove an effective tool in search for new physics.
- The Lorentz structure at the interaction vertex of top has significant effect on top polarization.
- Final state kinematics are found to be sensitive to top polarization.
- An interesting angular variable is defined which may be sensitive to the spin of the particle.
- A natural extension to this work is studying the associated production of charged Higgs with top quark. (work in progress)