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From theory to data: MC road

Lagrangian
L(p1,p2,...)

Feynman 
rules

Matrix 
Elements 

Showering/
Hadronization

Detector 
Resolution

Data 
Analysis

Events (Signal
+Background)

Sherpa Collaboration

1. High-Q  Scattering2 2. Parton Shower 

3. Hadronization 4. Underlying Event 

For a given signature, try to 
identify an excess of events 

over the expected number of 
background events 

Aim  #1:
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Given an excess of events, try to identify the 
underlying theory and measure the properties of 

the new fields (mass, spin, coupling)

Aim  #2:

Data 
Analysis

Lagrangian
L(p1,p2,...)

pp → Z’ → e+e- pp → gg,gq,qq→ jets + MET~~ ~~ ~~

an “easy” example

measurement of the properties 
of the new fields has to 

proceed with more complex 
observables

From data to theory:

a “tough” example

properties of the Z’ can be studied 
by analyzing one observable at 
the time (mass⟷minv(e+,e-), spin⟷Ωe)
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Data 
Analysis

Lagrangian
L(p1,p2,...)

From data to theory:

Two different approaches have been investigated to handle the measurement 
of properties of decay chains with missing ET at hadron colliders

Kinematics methods Model dependent analyses

•based on a restricted number of 
observables

•no use of strong theoretical 
assumptions

•relevant for the early stages of 
investigation

•attempt to maximize the amount of 
experimental information 

•strong theoretical assumptions       

•relevant for precise measurements
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Data 
Analysis

Lagrangian
L(p1,p2,...)

From data to theory:

Two different approaches have been investigated to handle the measurement 
of properties of decay chains with missing ET at hadron colliders

Kinematics methods Model dependent analyses

ex: endpoint region, MT2,...

•based on a restricted number of 
observables

•no use of strong theoretical 
assumptions

•relevant for the early stages of 
investigation

•attempt to maximize the amount of 
experimental information 

•strong theoretical assumptions       

•relevant for precise measurements

ex: matrix element method

investigated in this talk
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The matrix element method 
basic idea: likelihood analysis based on the whole information at hand 
[kondo, 88] 

Given an experimental sample S={xi} of N events distributed according to 
an expected probability law P(x|α) parametrized by α = a set of 
unknown theoretical parameters (can include mass, spin, bg 
normalization, ...), one needs to

1.  evalutate the weight P(xi|α) for each event xi 

2.  extract the values of the theoretical parameters in the set α by 
maximizing the  likelihood built upon the weights P(xi|α) attached to 
each reconstructed event

L(α) ∝
N∏

i=1

P (xi|α)
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The matrix element method 
The question is: how to define the weights P(xi|α) ?

- If each final-state particle (including partons) was measured with a very 
good resolution, the weight P(xi|α) would be simply given by the parton-
level scattering amplitude 

- But some particles may escape from the detector without any interaction, 
and the partons themselves are not reconstructed in the detector              
a   we need to marginalize over unconstrained information and to 
convolute with a resolution function W for the measured quantities 

the transfer function
W (x, y)

y

reconstruction
analysis

detector 
resolution

showering/
hadronization

parton-level 
event

x

is called 

W

P (xi, α) =
1
σ

∫
dφy|Mα|2(y)W (xi,y)

|Mα(y)|2
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Early matrix element analyses at the Tevatron

Top-quark mass measurement from     production in hadron collisions

t

t̄

j

µ+

νµ

j

g

b

b̄

W+

W−
g

t

t̄

µ−
µ+

νµ

ν̄µ

g

b

b̄

W+

W−
g

D0, 2006; CDF 2007.

semi-leptonic channel

dileptonic channel

D0, 2007; CDF 2007.

Examples of Matrix Element analyses

top-quark mass determination from top-quark pair events

Results for the semi-leptonic channel (D0 collaboration)

0.4 fb−1

175 events

MadWeight – p. 8

[DO Phys. Rev. D75 092005, 2006]

tt̄

 Significant improvement for the measurement 
of the top-quark mass
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Practical evaluation of the weights

Amplitude 
generator

(MadGraph)

Fit from MC tuned 
to the resolution of the 

detector

P (xi, α) =
1
σ

∫
dφy |M |2(y) W (xi,y)

Phase-space
integrator
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Practical evaluation of the weights

Amplitude 
generator

(MadGraph)

Fit from MC tuned 
to the resolution of the 

detector

Phase-space
integrator

P (xi, α) =
1
σ

∫
dφy |M |2(y) W (xi,y)

[PA, F. Maltoni, 
M. Mattelaer, V. Lemaitre]
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MadWeight phase-space generator

To perform the integrations that define the weights using adaptive  
Monte Carlo techniques, one has to use a phase-space measure         
that flattens the peaks in the integrand

For a generic decay chain and an arbitrary transfer function this is 
achieved automatically by 

P (x) ∼
∫

dφy|M |2(y)W (x, y) →
∫

dφ̃y
|M |2(y) W (x, y)

g(y)

dφ̃y

block A

block E

block D

CS B

1

2

11 (ν)

3

4 5

10 (ν)

6 8

7

9

Figure 7: Illustration of the decomposition of the phase-space into blocks for a specific decay
chain.

map the invariant mass of each intermediate particle shown as a dashed line, the angles

of all the visible particles (labeled by an index ranging from 3 to 9) and the energies of

the visibles particles labeled by an index ranging from 3 to 6. Once all these variables

have been generated, the kinematics of each block and the associated phase-space weight

is computed by ordering the blocks backward in time. First the equations that define the

kinematics of blocks A and E are solved, so that the momentum of each leg in these blocks

is defined. Once the kinematics of block E is determined, we can solve the equations that

define the kinematics of block D. Finally, as all the legs in the blocks A, E and D have

definite momenta, we can solve the equations that determine the variables in the CS. The

formulas that are used to fill the kinematics in each block and compute the jacobian factors

are given in the Appendix.

This approach is generalized to the case of an arbitrary decay chain in our code. Any

variable of integration in a phase-space parametrization that can potentially be used in our

code enters into one of the three following categories.

1. The variable controls the strength of a resolution function. If the resolution function

is a δ distribution, the variable is fixed to the value associated with the experimental

event. Otherwise, the grid is adapted such that the variable is generated according

to a probability density that reproduces approximately the shape of the resolution

function.

2. The variable controls the strength of a propagator enhancement. In this case, the

variable can be generated according to a probability density that reproduces exaclty

the shape of the propagator by applying a well-known analytic change of variable.

3. The variable is either the polar or the azimuthal angle of a missing particle. In this

case, the variable is generated according to a uniform distribtion in the interval [0,π]

or [0, 2π] at the first iteration. The grid is adapted at each iteration to approximate

the optimal probability density.

– 17 –

1.  defining optimal phase-space 
mappings obtained by applying local 
variable transformations on the 
canonical parametrization,

2.  combining these mappings in a 
multi-channel integration
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Disentangling different spin hypotheses in decay chain with missing ET 

Capabilities of the code: a toy example 

t→ H+b vs. t→W+b
t

t̄

H+

b̄

b

W−

τ+

ντ

ν̄µ

µ−

t

t̄

W+

b̄

b

W−

τ+

ντ

ν̄µ

µ−

we set 
(keep only the spin
correlation effects)

backgroundsignal

mH ≈ mW

|mH −mW |" ΓH ,ΓW

(neglect the interference terms) 

Possible discriminators: 
•keeping only information                 

from PT of the tau:
D(x) =

σ−1
H

dσH
dpT,τ

σ−1
H

dσH
dpT,τ

+ σ−1
W

dσW
dpT,τ

• matrix element method 
(keeps all information): D(x) =

PH(x)
PH(x) + PW (x)
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Disentangling different spin hypotheses in decay chain with missing ET 

Capabilities of the code: a toy example 

t→ H+b vs. t→W+b

• discriminator: 

• data: 240 signal events 
760 background events
fraction of signal events: 

Rin=24%
RD
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Figure 11: (a) Expected normalized distribution of events with respect to the discriminant variable
d built upon the pT weight for a pure signal sample (solid histogram) and for a pure backgound sam-
ple (dashed histogram). The error bars are the distribution associated with the pseudo-experiment
sample. (b) χ2 values associated with the fit of the pseudo-experiment data to the theoretical
prediction parametrized by the faction r of signal events.

to use a standard phase-space generator that is optimized for the computation of cross

sections.

The expected normalized-to-one distribution of events with respect to the discriminant

variable d built upon the pT weights in Eq. (4.7) are displayed in Fig. (11) for a sample of

pure signal events (solid histogram) and for a sample of pure background events (dashed

histrogram). These distributions show a very narrow peak at d = 0.5. The comparison with

the distribution of events with respect to the matrix-element-based discriminant displayed

in Fig. 10 demonstrates that the discriminant power is substantially reduced when only

the information on the transverse momentum of the τ + is retained. The normalized-to-

one distribution associated with the pseudo-experiment sample is represented by the blue

dots. This distribution can be parametrized as a superposition of the signal and backgound

distributions. The χ2 values of the corresponding fit as a function of the fraction of signal

events are shown in Fig. 11, (b). We find r = 0.28 ± 0.23%.

4.3 Smuon pair production at the LHC

Over the last 15 years, there has been a tremendous amount of work devoted to new

techniques for mass reconstruction of new particles that might be produced at the LHC.

In most scenarios, the hypothetical new physics states are not expected to be directly

observed experimentally, i.e. they appear as intermediate states in specific decay chains or

they escape from the detector without interacting with it. Hence their mass can only be

reconstructed indirectly, by making a number of assumptions on the decay chain at work.

By increasing the number of assumptions, the information that can be extracted from the

decay chain is also increased. However, due to the lack of constraints on physics beyond

the standard model, the proposed techniques have to be general enough, at least if they

are aimed at reconstructing the mass of new hypothetical particles in the early stages of

investigation. Also, the limited knowledge of the detector has to be taken into account. In

– 26 –
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r = fraction of signal events

D(x) =
σ−1

H
dσH
dpT,τ

σ−1
H

dσH
dpT,τ

+ σ−1
W

dσW
dpT,τ

Analysis based on the pT weight:

By fitting the event density distribution of the pseudo data by a superposition of 
the expected distributions for the signal and for the background, we get  

reconstructed fraction of signal events (Rout) = 28±24%
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Disentangling different spin hypotheses in decay chain with missing ET 

Capabilities of the code: a toy example 

t→ H+b vs. t→W+b

• discriminator: 

• data: 240 signal events 
760 background events
fraction of signal events: 

Rin=24%

D(x) =
PH(x)

PH(x) + PW (x)
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Figure 10: (a) Expected normalized distribution of events with respect to the discriminant d
built upon the matrix element weight for a pure signal sample (solid histogram) and for a pure
backgound sample (dashed histogram). The error bars are the distribution associated with the
pseudo-experiment sample, assuming that the statistical error on the number N of events in a
given bin is given by

√
N . (b) χ2 values associated with the fit of the pseudo-experiment data to

the theoretical prediction parametrized by the faction r of signal events.

distributions and allow us to distinguish them. One can take advantage of this difference

to find out the fraction of signal events in the pseudo-experiment sample.

The normalized-to-one distribution associated with the pseudo-experiment sample as

a function of the discriminant variable d is also displayed in Fig. 10. The fraction of signal

events in the pseudo-experiment sample can be estimated by fitting the points [Pdata(d)]

with the curve

Pdata(d) = rPS(d) + (1 − r)PB(d), (4.6)

and minimizing the χ2 with respect to the parameter r that represents the fraction of signal

events in the pseudo-experimental sample. The best fit is obtained for r = 24 ± 9%, in

agreement with the true fraction of signal events.

In the above analysis, we have shown –within our simplifying assumptions– that the

spin correlations effects at the reconstructed level are still strong enough to extract the

fraction of signal events. We have made use of the complete reconstructed information

in the evaluation of the matrix element weights. One may also investigate whether there

is a more inclusive observable that would capture most of the spin correlation effects.

One potential candidate is the pT of the τ+. Restricting the experimental input to this

observable amounts to flattening the transfer functions associated with each particle in the

final state except the τ+. Under our assumption of perfect resolution for τ +, the matrix

element weight then reduces to a normalized cross section differential in pT (τ+)

PS,B(x) →
1

σS,B

dσS,B

dpT
(pT (τ+)) (4.7)

In other words, we would like to determine to which extend the pT spectrum of the τ+

provides an event-by-event weight that is as discriminant as the matrix element weight.

The advantage of the weights defined in Eq. (4.7) is that their evaluation only requires

– 25 –
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Analysis based on the matrix element weight:

The discriminating power is substantially improved. The fit of the distribution 
associated with the pseudo-data gives:   

reconstructed fraction of signal events (Rout) = 24±9%
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Conclusion and perspectives
✤ The matrix element method is conceptually a powerful technique, as it 

makes an optimal use of both the experimental and the theoretical 
information.

✤ I have presented MadWeight, a tool that computes the matrix element 
weights for arbitrary decay chains and transfer functions.

✤ The code is fully automatic and highly parallel in nature, and 
therefore reduces dramatically time computation issues associated 
with the matrix element techniques.

✤ The control on the systematic errors introduced by the matrix element 
method remains a delicate issue. Beside the Monte Carlo analyses 
that can be done under ideal conditions, it is important to identify 
which measurements can be achieved with a good control on the 
systematics.  We hope that MadWeight will motivate works in this 
direction.
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