Precision predictions for Beyond the Standard Model processes.

Benjamin Fuks (IPHC Strasbourg / Université de Strasbourg)

In collaboration with G. Bozzi, J. Debove, M. Klasen, F. Ledroit, Q. Li & J. Morel

Phenomenology 2010 Symposium @ U. Wisconsin May 10, 2010

Introduction	Resummation	Results	Conclusions
0000	000	0000	O
Outline			

Motivation for precision calculations

3 Numerical results, including uncertainties, for supersymmetry and Z'

Introduction •000		

Need for precision: Drell-Yan process at the Tevatron

• Confrontation between theory and Tevatron data [DØ collaboration (2005, 2008)].

- * LO calculation: Disagreement between theory and experiment.
- * NLO invariant-mass distribution: good agreement.
- * NLO *p*_T-distribution:
 - ♦ Very good agreement in the large- p_T region.
 - ♦ Underestimation in the intermediate- p_T region.
 - ♦ Divergence in the small- p_T region.
- How to improve NLO predictions [in particular for the small-p_T region]?

Introduction		
0000		

Investigation of the next-to-leading order contributions

• Partonic invariant-mass and transverse-momentum distributions at $\mathcal{O}(\alpha_s)$,

$$\begin{aligned} \frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}M} &= \hat{\sigma}^{(0)}(M)\,\delta(1-z) + \alpha_{s}\,\hat{\sigma}^{(1)}(M,z) + \mathcal{O}(\alpha_{s}^{2}),\\ \frac{\mathrm{d}^{2}\hat{\sigma}}{\mathrm{d}M\,\mathrm{d}p_{T}} &= \hat{\sigma}^{(0)}(M)\,\delta(p_{T})\delta(1-z) + \alpha_{s}\,\hat{\sigma}^{(1)}(M,z,p_{T}) + \mathcal{O}(\alpha_{s}^{2}), \end{aligned}$$

where $z = M^2/s$.

- $\hat{\sigma}^{(1)}$ contains different pieces.
 - * Real gluon emission diagrams.

$$iM \approx g_s T^a \left[\frac{\epsilon \cdot k_2}{k_2^0 \mathbf{k}_{\mathbf{g}}^0 (1 + \cos \theta)} - \frac{k_1 \cdot \epsilon}{k_1^0 \mathbf{k}_{\mathbf{g}}^0 (1 - \cos \theta)} \right] \mathbf{i} \mathbf{M}^{\mathrm{Born}}$$

* Virtual loop contributions.

$$iM \approx (i\,g_s^2) \int \mathrm{d}k_g \, \frac{k_1 \cdot k_2}{k_g^2 \, (k_1^0 \mathbf{k}_{\mathbf{g}}^0 (1 - \cos \theta)) (k_2^0 \mathbf{k}_{\mathbf{g}}^0 (1 + \cos \theta))} \mathrm{i} \mathbf{M}^{\mathrm{Born}}$$

Soft and collinear radiation diverges and factorizes.

Precision predictions for BSM processes.

Benjamin Fuks - Phenomenology 2010 Symposium - 10.05.2010 - 4

Introduction 0000		

The problem of the soft and collinear radiation

• Sum of the two contributions.

$$\hat{\sigma}^{(1)} = \hat{\sigma}^{(1,\text{loop})} + \hat{\sigma}^{(1,\text{real})}$$

- * Cancellation of the poles.
- * Infrared behaviour: logarithmic terms in the distributions,

$$\alpha_s \left(\frac{\ln(1-z)}{1-z} \right)_+$$
 and $\frac{\alpha_s}{p_T^2} \ln \frac{M^2}{p_T^2}$

* Problems at $z \leq 1$ or small p_T .

The fixed-order theory is unreliable in these kinematical regions.

Introduction	n Resummation Results 000 0000	Conclusions 0
Impro	ovements	
	Improvements of the next-to-leading order calculation.	
	 Matching with a resummation calculation. 	
	* Correct treatment of the soft and collinear radiation.	
	* Perturbative method.	
	* Parton-level calculation.	
	* Three formalisms: - p_T -resummation: universally resums $\frac{\alpha_s}{\rho_T^2} \ln \frac{M^2}{\rho_T^2}$.	
	- Threshold resummation : universally resums $\left(\frac{\ln(1-z)}{1-z}\right)_{\perp}$.	
	- Joint resummation: universally resums both logs.	
	[Catani, de Florian, Grazzini (2001); Bozzi, Catani, de Florian, Grazzini (2006); Sterman (1987); Catani, Trentadue (1989,1991); Bozzi, BenjF, Klasen (2008)]	
	• Matching with a parton shower algorithm.	
	* Approximation of the resummation calculation.	
	* Suitable for a proper description of the collision.	

Precision predictions for BSM processes

Benjamin Fuks - Phenomenology 2010 Symposium - 10.05.2010 - 6

Introduction	Resummation	Results	Conclusions
0000	●○○	0000	O

The resummed component

- Based on factorization properties.
 - * Holds in non-physical conjugate spaces.
 - * Mellin N-space (N conjugate to M^2/S_h).
 - * Impact parameter b (conjugate to p_T).

$$d\sigma^{(\text{res})}(N,b) = \sum_{a,b} f_{a/h_1}(N+1) f_{b/h_2}(N+1) \mathcal{W}_{ab}(N,b),$$
$$\mathcal{W}_{ab}(N,b) = \mathcal{H}_{ab}(N) \exp\left\{\mathcal{G}(N,b)\right\}.$$

- The *H*-coefficient:
 - * Contains real and virtual collinear radiation, hard contributions.
 - * Can be computed perturbatively as series in α_s , from fixed-order results.
 - * Is process-dependent.
- The Sudakov form factor \mathcal{G} :
 - * Contains the soft-collinear radiation (the logarithmic terms).
 - * Resummed to all orders in α_s .
 - * Can be computed perturbatively as series in $\alpha_s \log$.
 - * Is process-independent (universal).

Resummation	
000	

The finite component - matching to the fixed order

- Fixed-order calculations.
 - * Reliable far from the critical kinematical regions.
 - * Spoiled in the critical regions.
- Resummation.
 - * Needed in the critical regions.
 - * Not justified far from the critical regions.
- Intermediate kinematical regions: both should contribute.

Information from both fixed order and resummation is required. \Rightarrow consistent matching procedure.

Matching procedure:

- * Addition of both resummation and fixed-order results.
- * Subtracting the expansion in α_s of the resummed result.
- * No double-counting of the logarithms.

 $d\sigma = d\sigma^{(F.O.)} + d\sigma^{(res)} - d\sigma^{(exp)}.$

Introduction	Resummation	Results	Conclusions
0000	○○●	0000	O
Resummation vs.	Tevatron data		

• Confrontation between theory and Tevatron data $[D\phi \text{ collaboration (2005, 2008)}]$.

- Invariant-mass distribution: good agreement. (no change with respect to next-to-leading order).
- *p_T*-distribution: good agreement. (big improvement with respect to next-to-leading order).

	Results ●000	

Chargino-neutralino associated production: mass-spectrum

[[]Debove, BenjF, Klasen (in prep.)]

Scenario: ≈ 180 GeV gauginos.

Invariant-mass spectrum

- * NLO: 20-25% increase.
- * Resummation: moderate increase.
- Scale dependence $(M/2 \le \mu_R = \mu_F \le 2M)$.
 - * LO: very large dependence.
 - * NLO: large dependence.
 - * Resummation: reduced dependence. (higher order terms in the Sudakov).

	Results 0●00	

Chargino-neutralino associated production: p_T -spectrum

• Scenario: \approx 180 GeV gauginos.

- Matching efects
 - * Small p_T : expansion \approx fixed-order.
 - * Large p_T : expansion \approx resummation.
 - * Intermediate p_T: enhancement.
- Scale dependence $(M/2 \le \mu_R = \mu_F \le 2M)$.
 - ⁶ Reduction of the uncertainties.
 - * Less than 5% for $p_T > 5$ GeV.
- Parton densities dependence (44 CTEQ sets).
 - * 4-5% uncertainties for all p_T .
 - Similar to weak boson production.
- Non perturbative effects at low p_T .
 - * Intrinsic p_T of the partons.
 - * Under control for $p_T > 5$ GeV.
- Uncertainties under control for $p_T > 5$ GeV.

		Results oo●o	
Comparison:	PYTHIA and	p_T -resummation	

- Scenario \approx 110 GeV gauginos.
- PYTHIA predictions.
 - * Used for SUSY experimental analyses.
 - * Leading log Sudakov form factor.
 - * Two tunes.
 - ◊ CDF-AW.
 - ◊ Our tune AW'.
- Two set of resummed predictions.
 - * Leading logaritmic approximation.
 - * Next-to-leading logaritmic results.
- Pythia results.
 - * Improves the LL picture.
 - * Intrinsic p_T helps to reproduce NLL.
 - * **Underestimation** for intermediate p_T .
 - * Direct impact for experimental analyses.

[BenjF, Klasen, Ledroit, Li, Morel (2008)]

- 1 TeV Z'; PYTHIA (LO/LL+), MC@NLO (NLO/LL), resummation (NLO/NLL).
- Mass-spectrum normalized to leading order:
 - * PYTHIA (power shower): mass-spectrum multiplied by a K-factor of 1.26.
 - * Good agreement between MC@NLO and resummation.
- Transverse-momentum distribution:
 - * PYTHIA spectrum much too soft, peak not well predicted.
 - * Good agreement between MC@NLO and resummation.

Precision predictions for BSM processes.

Benjamin Fuks - Phenomenology 2010 Symposium - 10.05.2010 - 13

Summary - conclusions

• Soft and collinear radiation:

- * Large logarithmic corrections in p_T and invariant-mass spectra.
- * Need for resummation (or parton showers).

• p_T, threshold and joint resummations have been implemented.

- * Reliable perturbative results.
- * Correct quantification of the soft-collinear radiation.
- * Important effects, even far from the critical regions.
- * Uncertainties from scales and parton densities under good control.
- * Reduced dependence on non-perturbative effects.
- Comparison with Monte Carlo generators
 - * Significant shortcomings in normalization and shapes for PYTHIA.
 - * MC@NLO reaches (almost) the same precision level as resummation. BUT: easier implentation in the analysis chains of any experiment.