

Irreducible Uncertainties in $\bar{B} \to X_s \gamma$

Gil Paz

Enrico Fermi Institute, University of Chicago

M. Benzke, S.J. Lee, M. Neubert, GP [arXiv:1003.5012]

S.J. Lee, M. Neubert, GP PRD **75** 114005 (2007)

Introduction

$\bar{B} \to X_s \gamma$ in the SM

• $b \rightarrow s\gamma$ is a flavor changing neutral current (FCNC)

In SM no FCNC at tree level

Arises as a loop effect:

gives rise to the operator:

$$Q_{7\gamma} = \frac{-e}{8\pi^2} m_b \bar{s} \sigma_{\mu\nu} F^{\mu\nu} (1+\gamma_5) b$$

part of the effective Hamiltonian

$$\mathcal{H}_{\mathrm{eff}} \ni \frac{G_F}{\sqrt{2}} C_{7\gamma} Q_{7\gamma}$$

Constraints on New Physics: $\bar{B} \to X_s \gamma$

• $\bar{B} \rightarrow X_s \gamma$ is an important probe of new physics

 $b \to s \gamma$ can have contribution from new physics e.g. SUSY

(only one diagram shown):

leads to same operator, modifies $C_{7\gamma}$

• BSM calculations are becoming advanced e.g.

Complete NLO SUSY MFV

SusyBSG package (Degrassi, Gambino, Slavich '07)

• Need to think seriously about errors!

• Produce it directly...

$$Q_{7\gamma} = \frac{-e}{8\pi^2} m_b \bar{s} \sigma_{\mu\nu} F^{\mu\nu} (1+\gamma_5) b$$

How To Make a Photon?

• Produce it directly...

$$Q_{7\gamma} = \frac{-e}{8\pi^2} m_b \bar{s} \sigma_{\mu\nu} F^{\mu\nu} (1+\gamma_5) b$$

• Or make a gluon or a quark pair

$$Q_{8g} = \frac{-e}{8\pi^2} m_b \bar{s} \sigma_{\mu\nu} G^{\mu\nu} (1+\gamma_5) b$$
$$Q_1^q = (\bar{q}b)_{V-A} (\bar{s}q)_{V-A} \quad (p=u,c)$$

and convert them to a photon

How To Make a Photon?

• Produce it directly...

$$Q_{7\gamma} = \frac{-e}{8\pi^2} m_b \bar{s} \sigma_{\mu\nu} F^{\mu\nu} (1+\gamma_5) b$$

• Or make a gluon or a quark pair

$$Q_{8g} = \frac{-e}{8\pi^2} m_b \bar{s} \sigma_{\mu\nu} G^{\mu\nu} (1+\gamma_5) b$$

$$Q_1^q = (\bar{q}b)_{V-A} (\bar{s}q)_{V-A} \quad (p=u,c)$$

and convert them to a photon

• But it will cost you..

Effective Hamiltonian

• For $\bar{B} \to X_s \gamma$ need Effective Hamiltonian

$$\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} \sum_{p=u,c} \lambda_p \left(C_1 Q_1^p + C_2 Q_2^p + \sum_{i=3,\dots,10} C_i Q_i + C_{7\gamma} Q_{7\gamma} + C_{8g} Q_{8g} \right) + \text{h.c.}$$

- At leading power only $Q_{7\gamma} Q_{7\gamma}$ contribute
- At higher orders need other $Q_i Q_j$ contributions
- Most important: $Q_{7\gamma}, Q_{8g}$, and Q_1

$$Q_{7\gamma} = \frac{-e}{8\pi^2} m_b \bar{s}\sigma_{\mu\nu} (1+\gamma_5) F^{\mu\nu} b$$

$$Q_{8g} = \frac{-g_s}{8\pi^2} m_b \bar{s}\sigma_{\mu\nu} (1+\gamma_5) G^{\mu\nu} b$$

$$Q_1^q = (\bar{q}b)_{V-A} (\bar{s}q)_{V-A} \quad (q=u,c)$$

• Ratio of Wilson coefficients:

$$C_1$$
 : $C_{7\gamma}$: C_{8g}
3 : 1 : $\frac{1}{2}$

Total Rate

- Previous studies of $Q_i Q_j$ contributions focus on $\Gamma(\bar{B} \to X_s \gamma)$ and mostly on α_s suppressed effects
- Common lore:

like $\Gamma(\bar{B} \to X_u \, l \, \bar{\nu})$ non perturbative effects arise at $1/m_b^2$

Total Rate

• Previous studies of $Q_i - Q_j$ contributions focus on $\Gamma(\bar{B} \to X_s \gamma)$ and mostly on α_s suppressed effects

• Common lore:

like $\Gamma(\bar{B} \to X_u \, l \, \bar{\nu})$ non perturbative effects arise at $1/m_b^2$

- Hints that not all is well
 - $-Q_{8g}-Q_{8g}$ (Ali, Greub '95; Kapustin, Ligeti, Politzer '95)
 - $Q_1 Q_{7\gamma}$ (Voloshin '96; Ligeti, Randall, Wise '97; Grant, Morgan, Nussinov, Peccei '97; Buchalla, Isidori, Rey '97)
 - No local OPE for $\Gamma(\bar{B} \to X_s \gamma)$ (Ligeti, Randall, Wise '97)

But effects were thought to be under control or small ...

Total Rate

- Previous studies of $Q_i Q_j$ contributions focus on $\Gamma(\bar{B} \to X_s \gamma)$ and mostly on α_s suppressed effects
- Common lore:

like $\Gamma(\bar{B} \to X_u \, l \, \bar{\nu})$ non perturbative effects arise at $1/m_b^2$

- Hints that not all is well
 - $-\ Q_{8g}-Q_{8g}$ (Ali, Greub '95; Kapustin, Ligeti, Politzer '95)
 - $Q_1 Q_{7\gamma}$ (Voloshin '96; Ligeti, Randall, Wise '97; Grant, Morgan, Nussinov, Peccei '97; Buchalla, Isidori, Rey '97)
 - No local OPE for $\Gamma(\bar{B} \to X_s \gamma)$ (Ligeti, Randall, Wise '97)

But effects were thought to be under control or small ...

• Never a systematic study!

In fact uncertainty from $Q_{7\gamma} - Q_{8g}$ was **missed**!

(Lee, Neubert, GP '06)

Non perturbative effects in $\Gamma(\bar{B} \to X_s \gamma)$ arise at $1/m_b$

• What do we find from a systematic analysis?

Factorization at Subleading Power and Irreducible Uncertainties in $\bar{B} \rightarrow X_s \gamma$ Decay

M. Benzke, S.J. Lee, M. Neubert, GP [arXiv:1003.5012]

Pheno 2010 - Irreducible Uncertainties in $\bar{B}\, \rightarrow \, X_S \, \gamma$ - Gil Paz

New Factorization Formula: Schematically

At the endpoint region: $m_b - 2E_\gamma \sim \Lambda_{\rm QCD}$

• Considering only $Q_{7\gamma} - Q_{7\gamma}$: factorization formula for $d\Gamma/dE_{\gamma}$

(Korchemsky, Sterman '94; Bauer, Pirjol, Stewart '01)

 $\boldsymbol{H}\cdot\boldsymbol{J}\otimes S$

New Factorization Formula: Schematically

At the endpoint region: $m_b - 2E_\gamma \sim \Lambda_{\rm QCD}$

- Considering only $Q_{7\gamma} Q_{7\gamma}$: factorization formula for $d\Gamma/dE_{\gamma}$ (Korchemsky, Sterman '94; Bauer, Pirjol, Stewart '01)
- Considering also other operators \Rightarrow **new** factorization formula for $d\Gamma/dE_{\gamma}$ (Benzke, Lee, Neubert, GP '10)

- No analog for semileptonic decays
- New "resolved photon" contributions $\Rightarrow 1/m_b$ corrections to $\Gamma(\bar{B} \to X_s \gamma)$
- What are they?

Resolved Photon Contributions

Top line:	$Q_{7\gamma} - Q_{8g}$
Bottom left:	$Q_{8g} - Q_{8g}$
Bottom right:	$Q_1 - Q_{7\gamma}$

•
$$Q_1 - Q_{8g}$$
 and $Q_1 - Q_1$ give a $1/m_b^2$ effect

Resolved Photon Contributions

• Non perturbative effects arise from "Resolved Photon Contributions" They have the form

• The non perturbative functions h_{ij} are

$$h_{88}(\omega_1, \omega_2)$$
 F.T. of $\langle B|b(0)\cdots s(un)\bar{s}(r\bar{n})\cdots b(0)|B\rangle$

$$h_{17}(\omega_1)$$
 F.T. of $\langle \bar{B}|\bar{b}(0)\cdots G(s\bar{n})\cdots b(0)|\bar{B}\rangle$

$$h_{78}(\omega_1,\omega_2)$$
 F.T. of $\langle \bar{B}|\bar{b}(0)\cdots b(0)\sum_q e_q \bar{q}(r\bar{n})\cdots q(s\bar{n})|\bar{B}\rangle$

• For a photon energy cut $E_{\gamma} > E_0$ define

$$\mathcal{F}_E(\Delta) = \frac{\Gamma(E_0) - \Gamma(E_0)|_{\text{OPE}}}{\Gamma(E_0)|_{\text{OPE}}},$$

where $\Delta = m_b - 2E_0$ and $\Gamma(E_0)|_{OPE}$ is the older calculation

• Assuming $\Delta \gg \Lambda_{\rm QCD}$

$$\mathcal{F}_E(\Delta) = \frac{C_1(\mu)}{C_{7\gamma}(\mu)} \frac{\Lambda_{17}(m_c^2/m_b,\mu)}{m_b} + \frac{C_{8g}(\mu)}{C_{7\gamma}(\mu)} 4\pi\alpha_s(\mu) \frac{\Lambda_{78}^{\text{spec}}(\mu)}{m_b} + \left(\frac{C_{8g}(\mu)}{C_{7\gamma}(\mu)}\right)^2 \left[4\pi\alpha_s(\mu) \frac{\Lambda_{88}(\Delta,\mu)}{m_b} - \frac{C_F\alpha_s(\mu)}{9\pi} \frac{\Delta}{m_b} \ln \frac{\Delta}{m_s}\right] + \dots,$$

where model independently,

$$\begin{split} \Lambda_{17} \left(\frac{m_c^2}{m_b}, \mu \right) &= e_c \operatorname{Re} \int_{-\infty}^{\infty} \frac{d\omega_1}{\omega_1} \left[1 - F \left(\frac{m_c^2 - i\varepsilon}{m_b \,\omega_1} \right) + \frac{m_b \,\omega_1}{12m_c^2} \right] h_{17}(\omega_1, \mu), \\ \Lambda_{78}^{\text{spec}}(\mu) &= \operatorname{Re} \int_{-\infty}^{\infty} \frac{d\omega_1}{\omega_1 + i\varepsilon} \int_{-\infty}^{\infty} \frac{d\omega_2}{\omega_2 - i\varepsilon} h_{78}^{(5)}(\omega_1, \omega_2, \mu), \\ \Lambda_{88}(\Delta, \mu) &= e_s^2 \left[\int_{-\infty}^{\Lambda_{\text{UV}}} \frac{d\omega_1}{\omega_1 + i\varepsilon} \int_{-\infty}^{\Lambda_{\text{UV}}} \frac{d\omega_2}{\omega_2 - i\varepsilon} 2h_{88}^{\text{cut}}(\Delta, \omega_1, \omega_2, \mu) \right. \\ \left. - \frac{C_F}{8\pi^2} \Delta \left(\ln \frac{\Lambda_{\text{UV}}}{\Delta} - 1 \right) \right]. \end{split}$$

Pheno 2010 - Irreducible Uncertainties in $\bar{B}\, \rightarrow \, X_S \, \gamma$ - Gil Paz

• We need to estimate three parameters:

$$\begin{split} \Lambda_{17} \Big(\frac{m_c^2}{m_b}, \mu \Big) &= e_c \operatorname{Re} \int_{-\infty}^{\infty} \frac{d\omega_1}{\omega_1} \left[1 - F \left(\frac{m_c^2 - i\varepsilon}{m_b \,\omega_1} \right) + \frac{m_b \,\omega_1}{12m_c^2} \right] h_{17}(\omega_1, \mu), \\ \Lambda_{78}^{\text{spec}}(\mu) &= \operatorname{Re} \int_{-\infty}^{\infty} \frac{d\omega_1}{\omega_1 + i\varepsilon} \int_{-\infty}^{\infty} \frac{d\omega_2}{\omega_2 - i\varepsilon} h_{78}^{(5)}(\omega_1, \omega_2, \mu), \\ \Lambda_{88}(\Delta, \mu) &= e_s^2 \left[\int_{-\infty}^{\Lambda_{\text{UV}}} \frac{d\omega_1}{\omega_1 + i\varepsilon} \int_{-\infty}^{\Lambda_{\text{UV}}} \frac{d\omega_2}{\omega_2 - i\varepsilon} 2h_{88}^{\text{cut}}(\Delta, \omega_1, \omega_2, \mu) \right. \\ \left. - \frac{C_F}{8\pi^2} \Delta \left(\ln \frac{\Lambda_{\text{UV}}}{\Delta} - 1 \right) \right]. \end{split}$$

• Naively, if $\Lambda_{ij} \sim \Lambda_{\rm QCD} \sim 0.5 \ {\rm GeV}$

Effect on the rate can be up to 30%

• Fortunately, it is possible to constrain Λ_{17} and $\Lambda_{78}^{\text{spec}}$

We now discuss each of the three parameters

Λ_{17}

• We need to estimate

$$\Lambda_{17}\left(\frac{m_c^2}{m_b},\mu\right) = e_c \operatorname{Re} \int_{-\infty}^{\infty} \frac{d\omega_1}{\omega_1} \left[1 - F\left(\frac{m_c^2 - i\varepsilon}{m_b \,\omega_1}\right) + \frac{m_b \,\omega_1}{12m_c^2}\right] h_{17}(\omega_1,\mu)$$

• Recall

$$h_{17}(\omega_1)$$
 F.T. of $\langle \bar{B}|\bar{b}(0)\cdots G(s\bar{n})\cdots b(0)|\bar{B}\rangle$

where intuitively ω_1 is the soft gluon momentum

- $h_{17}(\omega_1)$
 - An even function of ω_1
 - Its normalization is $2\lambda_2 \approx 0.24 \,\mathrm{GeV}^2$
- Using an exponential or a Gaussian as a model for $h_{17}(\omega_1)$

$$h_{17}(\omega_1,\mu) = \frac{\lambda_2}{\sigma} e^{-\frac{|\omega_1|}{\sigma}} \quad \text{or} \quad h_{17}(\omega_1,\mu) = \frac{2\lambda_2}{\sqrt{2\pi\sigma}} e^{-\frac{\omega_1^2}{2\sigma^2}}$$

- Varying σ
 - $(\Lambda_{17}^{exp})_{max} = -4.6 \text{ MeV} \text{ (for } \sigma = 0.51 \text{ GeV)} \\ (\Lambda_{17}^{Gauss})_{max} = -8.1 \text{ MeV} \text{ (for } \sigma = 0.77 \text{ GeV)}$
- Not a conservative bound!

Λ_{17}

• We need to estimate

$$\Lambda_{17}\left(\frac{m_c^2}{m_b},\mu\right) = e_c \operatorname{Re} \int_{-\infty}^{\infty} \frac{d\omega_1}{\omega_1} \left[1 - F\left(\frac{m_c^2 - i\varepsilon}{m_b \,\omega_1}\right) + \frac{m_b \,\omega_1}{12m_c^2}\right] h_{17}(\omega_1,\mu)$$

• $h_{17}(\omega_1)$ doesn't have to be positive, e.g.

- Blue line: $\sigma = 0.5 \,\text{GeV}$ and $\Lambda = 0.425 \,\text{GeV} \Rightarrow \Lambda_{17} = -42 \,\text{MeV}$
- Another choice: $\sigma = 0.5 \text{ GeV}$ and $\Lambda = 0.575 \text{ GeV} \Rightarrow \Lambda_{17} = 27 \text{ MeV}$.
- Final range: $-60 \text{ MeV} < \Lambda_{17} < 25 \text{ MeV}$

Λ_{78}

• We need to estimate

$$\Lambda_{78}^{\text{spec}}(\mu) = \operatorname{Re} \int_{-\infty}^{\infty} \frac{d\omega_1}{\omega_1 + i\varepsilon} \int_{-\infty}^{\infty} \frac{d\omega_2}{\omega_2 - i\varepsilon} h_{78}^{(5)}(\omega_1, \omega_2, \mu)$$

• Recall

$$h_{78}(\omega_1,\omega_2)$$
 F.T. of $\langle \bar{B}|\bar{b}(0)\cdots b(0)\sum_q e_q \bar{q}(r\bar{n})\cdots q(s\bar{n})|\bar{B}\rangle$

• Method I: Fierz and use VIA

$$h_{78}(\omega_1,\omega_2)\big|_{\text{VIA}} = -e_{\text{spec}} \frac{f_B^2 M_B}{8} \left(1 - \frac{1}{N_c^2}\right) \phi_+^B(-\omega_1) \phi_+^B(-\omega_2)$$

where $\phi_{+}^{B}(-\omega_{1})$ is B-meson LCDA ("wave function")

• Λ_{78} depends on LCDA's inverse moment λ_B

$$\Lambda_{78}^{\text{spec}}\big|_{\text{VIA}} = -e_{\text{spec}} \left(1 - \frac{1}{N_c^2}\right) \frac{f_B^2 M_B}{8\lambda_B^2(\mu)} \in e_{\text{spec}} \left[-386 \,\text{MeV}, -35 \,\text{MeV}\right]$$

$$e_{\text{spec}} = \frac{1}{3} \text{ for } \bar{B}^0, -\frac{2}{3} \text{ for } B^-$$

Λ_{78}

• We need to estimate

$$\Lambda_{78}^{\text{spec}}(\mu) = \operatorname{Re} \int_{-\infty}^{\infty} \frac{d\omega_1}{\omega_1 + i\varepsilon} \int_{-\infty}^{\infty} \frac{d\omega_2}{\omega_2 - i\varepsilon} h_{78}^{(5)}(\omega_1, \omega_2, \mu)$$

• Recall

$$h_{78}(\omega_1,\omega_2)$$
 F.T. of $\langle \bar{B}|\bar{b}(0)\cdots b(0)\sum_q e_q \bar{q}(r\bar{n})\cdots q(s\bar{n})|\bar{B}\rangle$

• Method II: Assume SU(3) flavor symmetry

 $\Rightarrow~\Lambda^{\rm spec}_{78}$ is determined by isospin asymmetry (Misiak '09)

$$\Delta_{0-} = \frac{\Gamma(\bar{B}^0 \to X_s \gamma) - \Gamma(B^- \to X_s \gamma)}{\Gamma(\bar{B}^0 \to X_s \gamma) + \Gamma(B^- \to X_s \gamma)}$$

measured by BaBar to be $\Delta_{0-} = (-1.3 \pm 5.9)\%$

• Including 30% SU(3) flavor breaking gives

$$\Lambda_{78}^{\rm spec} \approx -4.5 \,\text{GeV} \left(e_{\rm spec} \pm 0.05 \right) \Delta_{0-}$$

Λ_{88}

• We need to estimate

$$\Lambda_{88}(\Delta,\mu) = e_s^2 \left[\int_{-\infty}^{\Lambda_{\rm UV}} \frac{d\omega_1}{\omega_1 + i\varepsilon} \int_{-\infty}^{\Lambda_{\rm UV}} \frac{d\omega_2}{\omega_2 - i\varepsilon} 2h_{88}^{\rm cut}(\Delta,\omega_1,\omega_2,\mu) - \frac{C_F}{8\pi^2} \Delta \left(\ln \frac{\Lambda_{\rm UV}}{\Delta} - 1 \right) \right]$$

• Recall

$$h_{88}(\omega_1,\omega_2)$$
 F.T. of $\langle \bar{B}|\bar{b}(0)\cdots s(un)\bar{s}(r\bar{n})\cdots b(0)|\bar{B}\rangle$

• We model $\Lambda_{88}(\Delta,\mu)$ by

$$\Lambda_{88}(\Delta,\mu) \approx e_s^2 \Lambda(\mu) \,, \qquad \Lambda(\mu) > 0 \,,$$

with $0 < \Lambda(\mu) < 1 \,\mathrm{GeV}$

$$\mathcal{F}_E(\Delta) = \frac{C_1(\mu)}{C_{7\gamma}(\mu)} \frac{\Lambda_{17}(m_c^2/m_b,\mu)}{m_b} + \frac{C_{8g}(\mu)}{C_{7\gamma}(\mu)} 4\pi\alpha_s(\mu) \frac{\Lambda_{78}^{\text{spec}}(\mu)}{m_b} + \left(\frac{C_{8g}(\mu)}{C_{7\gamma}(\mu)}\right)^2 \left[4\pi\alpha_s(\mu) \frac{\Lambda_{88}(\Delta,\mu)}{m_b} - \frac{C_F\alpha_s(\mu)}{9\pi} \frac{\Delta}{m_b} \ln \frac{\Delta}{m_s}\right] + \dots,$$

• Using the above values for Λ_{17} and Λ_{88}

$$\mathcal{F}_E|_{17} \in [-1.7, +4.0] \%,$$

 $\mathcal{F}_E|_{88} \in [-0.3, +1.9] \%.$

• While for Λ_{78} we have

 $\mathcal{F}_E\Big|_{78}^{\text{VIA}} \in [-2.8, -0.3] \%$ or $\mathcal{F}_E\Big|_{78}^{\text{exp}} \in [-4.4, +5.6] \%$ (95% CL)

• "Scanning" over the ranges we have

$$-4.8\% < \mathcal{F}_E(\Delta) < +5.6\%$$
 (VIA for $\Lambda_{78}^{\text{spec}}$)

or

$$-6.4\% < \mathcal{F}_E(\Delta) < +11.5\% \quad (\Lambda_{78}^{\text{spec}} \text{ from } \Delta_{0-})$$

• Even if the error on Δ_{0-} was zero

$$-4.0\% < \mathcal{F}_E(\Delta) < +4.8\%$$
 (ideal case).

$\Gamma(\bar{B} \to X_s \gamma)$ in SM

- Experiment
 - Experimental value of $\operatorname{Br}(\bar{B} \to X_s \gamma)$: **Extrapolated** from measured $E_{\gamma} \sim 1.9 \text{ GeV}$ to $E_{\gamma} > 1.6 \text{ GeV}$ (HFAG Average '08) $\operatorname{Br}(\bar{B} \to X_s \gamma, E_{\gamma} > 1.6 \text{ GeV}) = (3.52 \pm 0.25) \cdot 10^{-4}$ (error 7%)
- Theory NNLO:
 - OPE: Assume 1.6 GeV is in the OPE region (Misiak et. al. '06) $Br(\bar{B} \rightarrow X_s \gamma, E_{\gamma} > 1.6 \text{ GeV}) = (3.15 \pm 0.23) \cdot 10^{-4}$ (error 7%)
 - MSOPE: 1.6 GeV is still in MSOPE region (Becher, Neubert '06) $Br(\bar{B} \rightarrow X_s \gamma, E_{\gamma} > 1.6 \text{ GeV}) = (2.98 \pm 0.26) \cdot 10^{-4} \text{ (error 9\%)}$
- Largest error "non perturbative": estimated 5%

based on $Q_{7\gamma} - Q_{8g}$ (Lee, Neubert, GP '06) times 1.5

• Improved numerical estimate based on all $1/m_b$ contributions

(Benzke, Lee, Neubert, GP '10): 5%

Conclusions and Outlook

Conclusions and Outlook

• New factorization formula for photon spectrum in endpoint region

$$d\Gamma(\bar{B} \to X_s \gamma) = \sum_{n=0}^{\infty} \frac{1}{m_b^n} \sum_i H_i^{(n)} J_i^{(n)} \otimes S_i^{(n)}$$

$$+ \sum_{n=1}^{\infty} \frac{1}{m_b^n} \left[\sum_i H_i^{(n)} J_i^{(n)} \otimes S_i^{(n)} \otimes \bar{J}_i^{(n)} + \sum_i H_i^{(n)} J_i^{(n)} \otimes S_i^{(n)} \otimes \bar{J}_i^{(n)} \otimes \bar{J}_i^{(n)} \right]_{\text{new}}$$

- New "resolved photon" contributions $\Rightarrow 1/m_b$ corrections to $\Gamma(\bar{B} \to X_s \gamma)$
- From a systematic study we find

An irreducible error of ~ 5% on $\Gamma(\bar{B} \to X_s \gamma)$

- This non perturbative error is the largest
- $\Rightarrow\,$ no prospect for an improvement on the theoretical prediction
- Future directions:
 - New contributions to CP asymmetry in $\bar{B} \to X_s \gamma$
 - $-\,$ Effect on the spectrum and the extraction of the HQET parameters