Discovering MSSM Higgses with jet substructure

Adam Martin (<u>aomartin@fnal.gov</u>) with G. Kribs, T. Roy and M. Spannowsky (U. Oregon) arxiv: 0912.4731 plus work in progress

PHENO 2010, UW-Madison, May 10th

‡ Fermilab

Punchline

Light MSSM Higgses, which decay h -> b bbar, are ideally suited to recently developed jet substructure techniques

this opens up a new way to look for h (& H,H⁺⁻,A): Higgses from the decays of heavy sparticles

20

٢

Could be first h discovery mode, before h-> $\gamma \gamma$, h-> $\tau \tau \parallel$

Our Motivation:

Despite large LHC cross sections... a light Higgs $m_h \sim 115-130~{ m GeV}$, which decays primarily

 $h \to \overline{b}b \sim 80\%$

will be difficult to find

most sensitive channel is $h \rightarrow \gamma \gamma + \text{jets}$ $S/\sqrt{B} \sim 2.5$ for $\mathcal{L} = 10 \text{ fb}^{-1}$

Our Motivation:

Despite large LHC cross sections... a light Higgs $m_h \sim 115-130~{ m GeV}$, which decays primarily

 $h \to \overline{b}b \sim 80\%$

will be difficult to find most sensitive channel is

 $h \rightarrow \gamma \gamma + ext{jets}$

 $S/\sqrt{B} \sim 2.5$ for $\mathcal{L} = 10 \text{ fb}^{-1}$

h
ightarrow au au $BR \sim 5 - 7 imes 10^{-2}$ also contributes, but smaller

Our Inspiration:

Recently, a NEW TECHNIQUE for light Higgses

(Butterworth, Davison, Rubin, Salam '08)

In associated production: $pp \rightarrow W(\ell \nu)/Z(\ell \ell) + \frac{h(\overline{b}b)}{h(\overline{b}b)}$

find: significance ~ 4.5 for $\mathcal{L} = 30$ fb⁻¹ (~ 2.6 for $\mathcal{L} = 10$ fb⁻¹)!!

by focusing on boosted Higgses: $p_{T,h} > 200 \ {
m GeV}$

and requiring jet substructure

(also investigated by ATLAS ATL-PHYS-PUB-2009-088 (Aug 2009))

brings back a channel that had been thought extremely difficult at the LHC

<u>substructure basics</u>

a boosted Higgs appears as a single "fat" jet with some distinguishing characteristics

- 1.) large invariant mass $m_j \sim m_h$
- 2.) original vertex is a heavy particle decaying to two light particles -- identified by unclustering, looking for "mass-drop", symmetric splitting --> subjets

(Butterworth et al '08, Thaler et al '08, Kaplan et al '08, Brooijmans '08, etc.)

3.) subjets are b-jets, can be flavor-tagged

... taken together, effectively suppresses QCD backgrounds

<u>substructure basics</u>

a boosted Higgs appears as a single "fat" jet with some distinguishing characteristics

- 1.) large invariant mass $m_j \sim m_h$
- 2.) original vertex is a heavy particle decaying to two light particles -- identified by unclustering, looking for "mass-drop", symmetric splitting --> subjets

(Butterworth et al '08, Thaler et al '08, Kaplan et al '08, Brooijmans '08, etc.)

3.) subjets are b-jets, can be flavor-tagged

... taken together, effectively suppresses QCD backgrounds

<u>substructure basics</u>

a boosted Higgs appears as a single "fat" jet with some distinguishing characteristics

- 1.) large invariant mass $m_j \sim m_h$
- 2.) original vertex is a heavy particle decaying to two light particles -- identified by unclustering, looking for "mass-drop", symmetric splitting --> subjets

(Butterworth et al '08, Thaler et al '08, Kaplan et al '08, Brooijmans '08, etc.)

3.) subjets are b-jets, can be flavor-tagged

... taken together, effectively suppresses QCD backgrounds

Boosted Higgses

interesting new approach (see talks by Plehn, Spannowsky, Thalapillil, Son)

BUT, a bit limited in SM

* boosted Higgs are rare in the SM: $\sim 5\%~{\rm in}~H+W/Z$

* need to trigger & suppress SM backgrounds: limited to W/Z leptonic decay modes

MSSM + substructure =

great opportunity for Higgs discovery

- MSSM Higgs has to be light $m_h \lesssim 130~{
 m GeV}$ decays dominantly to $b\overline{b}$
- MSSM has new colored particles (squarks, gluinos), which are heavy, but can be produced with large cross sections
- Cascade decay products can include Higgses

<u>OR</u>: if gravitino is LSP, can also have Higgses from $\tilde{\chi}_1^0 \rightarrow \tilde{G} + h$ ex.) $\tilde{\chi}^0 \tilde{\chi}^0 \rightarrow h + \gamma + \not\!\!\!E_T$

How boosted?

MSSM Higgses from sparticle decays have all requirements for boosted analysis. Combine with conventional variables (MET, H_T) for best results

How boosted?

MSSM Higgses from sparticle decays have all requirements for boosted analysis. Combine with conventional variables (MET, H_T) for best results

fights SM background

How boosted?

MSSM Higgses from sparticle decays have all requirements for boosted analysis. Combine with conventional variables (MET, H_T) for best results

fights combinatorial SUSY background

Higgses source comparison

- Higgses from sparticle decays
- big cross-section (inclusive SUSY prod.)
- SM and BSM backgrounds

how people usually look for the MSSM Higgs

- Higgs produced in <u>association</u> with SM particles
- smaller cross section (set by y_b)
- no (BSM) $ot\!\!\!/ E_T$
- only SM backgrounds

adapting substructure

SUSY events are busy, many other heavy particles around $(t, \tilde{q}, \tilde{\chi})$ which decay to b

these can end up in the "higgs jet", disrupting things

(as in t tbar h -- Plehn, Salam, Spannowsky)

modify substructure algorithm:

un-cluster fat jet entirely, then keep the two b-subjets which have most similar pT

now ... results

<u>Neutralino LSP Results: Point #1</u> $L = 10 \text{ fb}^{-1}, \sqrt{s} = 14 \text{ FeV}$

Neutralino LSP Results: Point #2,3

technique holds up at low m_A and $\tan\beta$, where traditional approaches have the most trouble

Can even discover heavier A,H states!

<u>Comments</u>

We've used the MSSM as an example source of Higgses from BSM, but the technique is by no means limited to this

- new, heavy particles who's decays include Higgses
- Higgs which decays primarily to b b-bar

 cleanliness of substructure analysis
 better extraction of underlying parameters

$$\left(\frac{\delta E}{E}\right)_{\rm jets} \cong \frac{0.6}{\sqrt{E/{\rm GeV}}} + 0.03$$
 (ATLAS TPR, cone jets.)

<u>Conclusions</u>

Light Higgses are hard to find at the LHC ...

- * the decays of MSSM particles offer a new source of Higgses at the LHC, especially boosted Higgses
- * The rate is smaller, but MSSM often comes with handles to suppress SM backgrounds
- * Using jet substructure analysis to fight combinatorial MSSM backgrounds, result is new channels to discover $h \to \overline{b}b$ improved substructure extends this to 'b-rich' environments
 - Complementary to conventional Higgs searches, smaller jetresolution effects
 - These new Higgs discovery channels can <u>easily</u> be as significant (or more so !) than conventional $h\to\gamma\gamma$

BACKUP SLIDES

<u>**Results: Details**</u>

Background:ALPGEN \longrightarrow PYTHIA6.4underlying event:Signal:SUSPECT2 \longrightarrow PYTHIA6.4ATLAS tune

- All final-state hadrons grouped into cells of size $(\Delta\eta\times\Delta\phi)=(0.1\times0.1)$
- Each cell is rescaled to be massless this models detector response (Thaler, Wang '08)

jet gymnastics performed using Fastlet (hep-ph/0512210)

b-tagging: 60% efficiency, 2% fake rate

jet-photon fake rate: .1%

Neutralino LSP Results: Point #4

Higgsino LSP is usually thought to be a bad DM candidate -annihilates too efficiently through gauge interactions

* too little DM much smaller problem than too much!

But, permitting $M_1 \lesssim \mu~$, we can get consistent $~\Omega_{DM}~$ without losing all our Higgses

Neutralino LSP point, analysis comparison

Point #1, with substructure analysis and with PGS

່∣ = 10 fh⁻¹ √e = 14 TeV

22

<u>Gravitino LSP point, analysis comparison</u>

boosted analysis finds the Higgs peak even where conventional analysis fails completely or leads to confusing features

Improved Jet Substructure on BSM:

- 1. cluster particles into jets, R = 1.2
- for each fat jet, undo clustering step by step, looking for mass drop and even splitting of energy between daughters.

If conditions met, record $\Delta R_{sub,i}$ and S_i . Keep unclustering until no more parent jets

- 3. Determine which splitting ${m n}$ has most even ${\it p_T}$ splitting
- 4. Resolve the fat jet into subjets at the scale $\cong \Delta R_{sub,n}/2$
- 5. if two of the three hardest subjets are tagged as b-jets candidate Higgs jet