The Low Energy Threshold Analysis of the First Two Phases of the Sudbury Neutrino Observatory

> Stanley Seibert Los Alamos National Laboratory

> > PHENO 10 Symposium May 11, 2010

arXiv:0910.2984

Solar Neutrino Experiments

The Sudbury Neutrino Observatory

I kiloton D2O target I.7 kiloton inner H2O shield 5.7 kiloton outer H2O shield 9456 PMTs

➡54% solid angle coverage

R = 550 cm fiducial volume R = 600 cm acrylic vessel

Low background: ~6000 m.w.e. shielding D2O U/Th < 10⁻¹⁴ g/g H2O U/Th < 5×10⁻¹³ g/g

The Sudbury Neutrino Observatory

I kiloton D2O target I.7 kiloton inner H2O shield 5.7 kiloton outer H2O shield 9456 PMTs

➡54% solid angle coverage

R = 550 cm fiducial volume R = 600 cm acrylic vessel

Low background: ~6000 m.w.e. shielding D2O U/Th < 10⁻¹⁴ g/g H2O U/Th < 5×10⁻¹³ g/g

Phases of SNO

Phase I "D2O"	Target Material:	l kton 99.92% pure D2O
	Neutron Capture Cross Section:	0.5 mb on ² H
	Neutron Signature:	6.25 MeV γ
, N	Target Material:	I kt D2O + 2 ton NaCl
Phase 'Salt	Neutron Capture Cross Section:	44 b on ³⁵ Cl
	Neutron Signature:	8.25 MeV γ cascade
с С	Target Material:	I kt D2O + ³ He counters
Phase "NCD	Neutron Capture Cross Section:	5333 b on ³ He
	Neutron Signature:	764 keV p+ ³ H track

Measured Solar Neutrino Fluxes

What else could SNO teach us?

MSW predicts additional phenomena not well observed.

What else could SNO teach us?

Tension between SNO and KamLAND can indicate θ_{13}

arXiv:0905.3549v1

The Low Energy Threshold Analysis (A "last 20% analysis" of the first two phases)

- I)Lower threshold to 3.5 MeV
- 2)Combine 2 phases in a joint-phase fit
- 3)Reduce backgrounds (E res & Cuts)
- 4)Improve MC simulation
- 5)Reduce systematic uncertainties
- 6)Create PMT β - γ PDF directly from data
- 7)Improved Signal Extraction approach
- 8)Improved oscillation analysis

7)Improved Signal Extraction approach

8)Improved oscillation analysis

3.5 MeV Analysis Threshold

GPU Acceleration of Likelihood Function

3D graphics cards are designed for data-parallel calculations.

The speed and flexibility of the GPU allowed us to use kernel estimation to create our PDFs and to float detector systematics in the likelihood function during optimization!

Signal Extraction: Two Fit Models

Model I: "Unconstrained Fit"

- Allow CC and ES flux to vary independently in each reconstructed electron energy bin
- Used in previous SNO papers
- Most flexible, but has unphysical number of degrees of freedom

Model 2: Polynomial survival probability fit

- Distort the CC and ES PDFs in a continuous way using neutrino energy, not reconstructed electron energy
- Enforce unitarity between CC, ES, NC signals
- Require the V_e survival probability to be a smooth function

Both: Float detector uncertainties in likelihood optimizaton!

Signal Extraction in Neutrino Energy

Results

CC Recoil-Electron Spectrum

⁸B Flux Result

⁸B Flux Result

Polynomial Survival Probability

Polynomial Survival Probability

Polynomial Survival Probability

Oscillation Analyses: Solar + KamLAND

Solar + KamLAND 2-flavor Overlay

Solar + KamLAND 3-flavor Overlay

Summary

Model-independent measure of the 8B flux: $\Phi_{\rm NC} = 5.140 + 4.0 - 3.8\% (10^6 \, {\rm cm^{-1} \, s^{-1}})$ Measure of the 8B flux assuming unitarity: $\Phi_{RR} = 5.046 + 3.8 - 3.9\% (10^6 \text{ cm}^{-1} \text{ s}^{-1})$ Best fit global MSW (2-flavor) mixing parameters: $\tan^2 \theta_{12} = 0.457 (+0.040 - 0.029)$ $\Delta m^2 = 7.59 \times 10^{-5} \text{ eV}^2 (+0.20 - 0.21)$ Φ_{8B} uncert = +2.38 -2.95% 3-flavor oscillation analysis:

 $\sin^2\theta_{13} = 2.00 + 2.09 - 1.63 \times 10^{-2} \implies \sin^2\theta_{13} < 0.057 (95\% \text{ C.L.})$

For details, see the preprint: arXiv:0910.2984

Final joint three-phase SNO analysis due out in 2010.

SNO+ collaboration now has stewardship of the SNO detector and is funded to look for: double-beta decay pep/CNO solar neutrinos and geoneutrinos!

Backup Slides

Understanding Systematics at Low Energies

Polynomial Fit Parameters

Parameter	Value	Stat	Syst	D/N Syst
a_0	0.0325	$+0.0366 \\ -0.0360$	+0.0059 -0.0092	$+0.0145 \\ -0.0148$
a_1	-0.0311	$^{+0.0279}_{-0.0292}$	$^{+0.0104}_{-0.0056}$	$^{+0.0140}_{-0.0129}$
c_0	0.3435	$+0.0205 \\ -0.0197$	$^{+0.0111}_{-0.0066}$	$+0.0050 \\ -0.0059$
c_1	0.00795	$^{+0.00780}_{-0.00745}$	$^{+0.00308}_{-0.00335}$	+0.00236 -0.00240
c_2	-0.00206	$^{+0.00302}_{-0.00311}$	$^{+0.00148}_{-0.00128}$	$+0.00057 \\ -0.00074$

TABLE XXVI: Extracted polynomial parameter values, statistical uncertainties, average systematic uncertainties, and day/night systematic uncertainties from the survival probability fit.

	$\Phi_{^{8}B}$	a_0	a_1	c_0	c_1	C_2
$\Phi_{^8B}$	1.000	-0.166	0.051	-0.408	0.103	-0.246
a_0	-0.166	1.000	-0.109	-0.263	0.019	-0.123
a_1	0.051	-0.109	1.000	-0.005	-0.499	-0.031
c_0	-0.408	-0.263	-0.005	1.000	-0.101	-0.321
c_1	0.103	0.019	-0.499	-0.101	1.000	-0.067
c_2	-0.246	-0.123	-0.031	-0.321	-0.067	1.000

TABLE XXVII: Correlation matrix for the polynomial survival probability fit.

MSW Parameters: 2-Flavor Analysis

Oscillation analysis	$\tan^2 \theta_{12}$	$\Delta m_{21}^2 (\mathrm{eV}^2)$
SNO (LOW)	$0.437^{+0.058}_{-0.058}$	$1.15^{+0.38}_{-0.18} \times 10^{-7}$
SNO (LMA)	$0.457{}^{+0.038}_{-0.042}$	$5.50^{+2.21}_{-1.62} imes 10^{-5}$
Solar	$0.457^{+0.038}_{-0.041}$	$5.89^{+2.13}_{-2.16} \times 10^{-5}$
Solar+KamLAND	$0.457^{+0.040}_{-0.029}$	$7.59^{+0.20}_{-0.21} imes 10^{-5}$
	$\chi^2_{\rm min}/{\rm ndf}$	$\Phi_{^{8}\mathrm{B}}~(\times 10^{6}\mathrm{cm^{-2}s^{-1}})$
SNO (LOW)	6.80/9	$5.013^{+0.176}_{-0.199}$
SNO (LMA)	8.20/9	$4.984^{+0.205}_{-0.182}$
Solar	67.5/89	$5.104_{-0.148}^{+0.199}$
Solar+KamLAND	82.8/106	$5.013^{+0.119}_{-0.148}$

TABLE XX: Best-fit neutrino oscillation parameters and extracted ⁸B flux from a two-flavor oscillation analysis. The 'SNO' results are from the combined LETA + Phase III oscillation analysis. Uncertainties listed are $\pm 1\sigma$ after the χ^2 was minimized with respect to all other parameters.

MSW Parameters: 3-Flavor Analysis

Oscillation analysis	$\tan^2 \theta_{12}$	$\Delta m^2_{21} (\mathrm{eV}^2)$	
Solar	$0.468^{+0.052}_{-0.050}$	$6.31^{+2.49}_{-2.58} imes 10^{-5}$	
Solar+KamLAND	$0.468{}^{+0.042}_{-0.033}$	$7.59^{+0.21}_{-0.21} imes 10^{-5}$	
	$\chi^2_{ m min}/ m ndf$	$\Phi_{^{8}\mathrm{B}}~(\times 10^{6}\mathrm{cm}^{-2}\mathrm{s}^{-1})$	
Solar	67.4/89	$5.115^{+0.159}_{-0.193}$	
Solar+KamLAND	81.4/106	$5.087^{+0.171}_{-0.159}$	
	\sin	$^{2}\theta_{13}(imes 10^{-2})$	
Solar	< 8.10 (95% C.L.)		
Solar+KamLAND		$2.00^{+2.09}_{-1.63}$	

TABLE XXI: Best-fit neutrino oscillation parameters and extracted ⁸B flux from a three-flavor oscillation analysis. Uncertainties listed are $\pm 1\sigma$ after the χ^2 was minimized with respect to all other parameters.

Polynomial Fit Interpretation

Polynomial Fit Interpretation

5) Reduce Systematic Uncertainties: Neutron Capture

ES Recoil-Electron Spectrum

CC Electrons as measure of V energy

$$T_v = 6 \text{ MeV}$$

