Recent Results on Properties of QCD Matter at RHIC

Huan Zhong Huang

黄焕中

Department of Physics and Astronomy University of California Los Angeles, CA 90095-1547

PHENO 2010 @Wisconsin

Thanks to Jinhui Chen, Shusu Shi, Gang Wang and Nu Xu

Quark-Hadron Phase Transition

Nucleus-Nucleus Collisions and Volcanic Eruption

Volcanic high p_T -- Strombolian eruption

Volcanic mediate p_T – Spatter (clumps)

Volcanic low p_T – Bulk matter flows

- 1) Initial Temperature
- 2) Viscosity
- 3) Bulk Matter Hadronization

Extract Thermal Radiation from Virtual γ *** (di-electrons) Yield**

Direct γ^* /inclusive γ^* from fitting the following function:

$$f_{data}(M_{ee}) = (1-r) \cdot f_{cocktail}(M_{ee}) + r \cdot f_{direct}(M_{ee})$$

$r = \operatorname{direct} \gamma^* / \operatorname{inclusive} \gamma^*$

- Fit in 120-300MeV/c² (insensitive to π⁰ yield)
- The mass spectrum follows the expectation for m > 300 MeV
 → S(m) = dN_{γ*}/dN_γ ~ 1

The Partonic Matter at RHIC is very Hot initially (T>300 MeV)

- Direct photon measurements
 - real (p_T>4GeV)
 - virtual (1<p_T<5GeV)</pre>
- p+p data consistent with pQCD down to p_T=1GeV/c
- Au+Au data require source other than pQCD for p_T < 2.5 GeV/c
- The source could be $T_{AuAu} = 221 \pm 19^{\text{stat}} \pm 19^{\text{syst}}$ MeV (time averaged)
- Theoretical calculations put T_{init} 300-600 MeV range.

The Partonic Matter at RHIC Flows Hydrodynamically

Ideal Hydrodynamics -- shear viscosity $\eta = 0$

Strongly Interacting Matter $\rightarrow \eta$ /s = shear viscosity/entropy

Povtun, Son and Starinets PRL94 111601 (2005) quantum limit η /s =1/4 π for N=4 supersymmetric Yang-Mills theory

Is this limit universal?

Great for string theorists! AdS/CFT calculations

- -- almost like QCD
- -- can be tested experimentally

Elliptic Flow Parameter v₂

Extraction of η/s relies on viscous hydrodynamic calculations

Assuming -- η /s does not depend on the collision centrality significantly.

[1]K. Dusling, G. Moore and D. Teaney, arXiv:0909.0754

Hadronization of Bulk Partonic Matter → Coalescence

Volcanic mediate p_T – Spatter (clumps)

Quark Coalescence – (ALCOR-J.Zimanyi et al, AMPT-Lin et al, Rafelski+Danos, Molnar+Voloshin) Quark Recombination – (R.J. Fries et al, R. Hwa et al)

10

Multi-Parton Dynamics for Bulk Matter Hadronization

Essential Features:

Traditional fragmentation \rightarrow particle properties mostly determined by the leading quark ! Emerging picture from RHIC data (R_{AA}/R_{CP} and v_2) \rightarrow all constituent quarks are almost equally important in determining particle properties !

 v_2 of hadron comes from v_2 of all constituent quarks !

The fact that in order to explain the v_2 of hadrons individual constituent quarks (n=2-meson,3-baryon) must have a collective elliptic flow v_2 and the hadron v_2 is the sum of quark $v_2 \rightarrow$ Strong Evidence for Deconfiement !

Strange and down quark distributions

Effective Parton Distribution in the Drop at Hadronization

Central Au+Au Collisions at RHIC Bulk Partonic Matter --

Summary

1) Initially very Hot T above 300 MeV

2) parton collectivity v₂ and hydro expansion Deconfined matter with parton DOF

3) η /s small – near the limit 1/4 π for N=4 supersymmetric Y-M theory

Discoveries from Unexpected Areas?!

RHIC -- Frontier for bulk partonic matter formation (quark clustering and rapid hadronization) -- Factory for exotic particles/phenomena

Potential exotic particles/phenomena: tetra- penta-quark states (particle and anti-part) di-baryons $H - (\Lambda - \Lambda, uuddss)$ $[\Omega - \Omega]$ (ssssss) strange quark matter

meta-stable Parity/CP odd vacuum bubbles disoriented chiral condensate

.

Signal observed from the data (bin-by-bin counting): 70±17;
Mass: 2.991±0.001±0.002 GeV; Width (fixed): 0.0025 GeV.
Au+Au: 89M MB events and 22M central collision events.

16

Near Future Perspective

Is there a critical point in the QCD phase diagram? -- RHIC low energy scan

Initial conditions for partonic evolutions? -- Color Glass Condensate

Heavy Quark flavored QGP -- detector upgrade for charm/bottom

Flavor tagged parton energy loss in dense matter

End

Constituent Quark Scaling

Parton P_T Distributions at Hadronization

If baryons of p_T are mostly formed from coalescence of partons at $p_T/3$ and mesons of p_T are mostly formed from coalescence of partons at $p_T/2$

$$s = \frac{\Omega(p_T / 3)}{\phi(p_T / 2)}$$
$$d = \frac{\Xi(p_T / 3)}{\phi(p_T / 2)}$$

 Ω and ϕ particles have no decay feeddown contribution ! Ξ decay contribution is small These particles have small hadronic rescattering cross sections

Constituent Quark Scaling

Constituent (n) Quark Scaling -- Meson n=2 and Baryon n=3 grouping Saturation of v₂ at Intermediate p_T

22

Constituent Quark Number Scaling -- Hadronization through quark clustering -- Effective DOF – constituent quarks quasi-hadrons at T_c ? Lattice QCD picture?