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QCD topology and the “strong CP problem”
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induced local P and CP violation in QCDxQED
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What about
strong interactions?



Very strict experimental limits exist on 
the amount of global violation of P and 
CP invariances in strong interactions 
(mostly from electric dipole moments)

But: P and CP conservation in QCD is 
by no means a trivial issue... 

Can a local P and CP violation occur in
QCD matter? 



Annals of 
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Chern-Simons forms

What does it mean for a gauge theory? 



Chern-Simons theory

What does it mean for a gauge theory? 

Riemannian connection

Curvature tensor Field strength tensor

Gauge field
PhysicsGeometry

SCS =
k

8π

∫

M
d3x εijk

(
AiFjk +

2
3
Ai[Aj , Ak]

)

Abelian non-Abelian



Remarkable novel properties: 

  gauge invariant, up to a boundary term

  topological - does not depend on the metric, knows only                                                         
about the topology of space-time M

  when added to Maxwell action, induces a mass for the gauge 
boson - different from the Higgs mechanism!

  breaks Parity invariance

Chern-Simons theory
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8π
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D. Leinweber

Topological number fluctuations in QCD vacuum
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instanton 

sphaleron 

Energy of 

gluon field 
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Sphaleron transitions
at finite energy or temperature

Sphalerons:
random walk of 
topological charge at finite T:



DK, A.Krasnitz and R.Venugopalan,
Phys.Lett.B545:298-306,2002

P.Arnold and G.Moore,
Phys.Rev.D73:025006,2006

Diffusion of Chern-Simons number in QCD: 
real time lattice simulations 



Experimental test of Chern-Simons dynamics 
in hot QCD:   Heavy ion collisions

LHC

NICA, 
JINR



Is there a way to observe topological charge 
fluctuations in experiment?

Relativistic ions create
a strong magnetic field: B



46

Heavy ion collisions as a source of the strongest 
magnetic fields available in the Laboratory

DK, McLerran, Warringa, 
Nucl Phys A803(2008)227
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Heavy ion collisions: the strongest magnetic 
field ever achieved in the laboratory



The situation is different if the field θ = θ("x, t) varies in space-time.
Indeed, in this case we have

θ ˜F µνFµν = θ∂µJ
µ
CS = ∂µ [θJµ

CS]− ∂µθJ
µ
CS. (16)

The first term on r.h.s. is again a full derivative and can be omitted; intro-
ducing notation

Pµ = ∂µθ = (M, "P ) (17)

we can re-write the Lagrangian (12) in the following form:

LMCS = −1

4
F µνFµν − AµJ

µ +
c

4
PµJ

µ
CS. (18)

Since θ is a pseudo-scalar field, Pµ is a pseudo-vector; as is clear from (18),
it plays a role of the potential coupling to the Chern-Simons current (15).
However, unlike the vector potential Aµ, Pµ is not a dynamical variable and
is a pseudo-vector that is fixed by the dynamics of chiral charge – in our case,
determined by the fluctuations of topological charge in QCD.

In (3+1) space-time dimensions, the pseudo-vector Pµ selects a direction
in space-time and thus breaks the Lorentz and rotational invariance: the
temporal component M breaks the invariance w.r.t. Lorentz boosts, while
the spatial component "P picks a certain direction in space. On the other
hand, in (2 + 1) dimensions there is no need for the spatial component "P
since the Chern-Simons current (15) in this case reduces to the pseudo-scalar
quantity ενρσAνFρσ, so the last term in (18) takes the form

∆L = c MενρσAνFρσ. (19)

This term is Lorentz-invariant although it still breaks parity. In other words,
in (2+1) dimensions the vector "P can be chosen as a 3-vector pointing in the
direction of an ”extra dimension” orthogonal to the plane of the two spatial
dimensions. This illustrates an important difference between the roles played
by the Chern-Simons term in even and odd number of space-time dimensions.
It is well-known that the term (19) leads to a gauge-invariant mass of the
photon; we will also see that it plays an important role in the Hall effect.

4.2. Maxwell-Chern-Simons equations
Let us write down the Euler-Lagrange equations of motion that follow

from the Lagrangian (18),(15) (Maxwell-Chern-Simons equations):

∂µF
µν = Jν − PµF̃

µν . (20)
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4. Topology-induced effects in electrodynamics:
Maxwell-Chern-Simons theory

4.1. The Lagrangian

Let us begin by coupling the theory (1) to electromagnetism; the resulting
theory possesses SU(3)× U(1) gauge symmetry:

LQCD+QED = −1

4
Gµν

α Gαµν +
∑

f

ψ̄f [iγµ(∂µ − igAαµtα − iqfAµ)−mf ] ψf−

− θ

32π2
g2Gµν

α G̃αµν −
1

4
F µνFµν , (11)

where Aµ and Fµν are the electromagnetic vector potential and the corre-
sponding field strength tensor, and qf are the electric charges of the quarks.

Let us discuss the electromagnetic sector of the theory (11). Electromag-
netic fields will couple to the electromagnetic currents Jµ =

∑
f qf ψ̄fγµψf .

In addition, the term (10) will induce through the quark loop the coupling of
FF̃ to the QCD topological charge. We will introduce an effective pseudo-
scalar field θ = θ(&x, t) (playing the role of the axion field) and write down
the resulting effective Lagrangian as

LMCS = −1

4
F µνFµν − AµJ

µ − c

4
θ ˜F µνFµν , (12)

where
c =

∑

f

q2
fe

2/(2π2). (13)

check the coefficient and sign of AµJµ

This is the Lagrangian of Maxwell-Chern-Simons, or axion, electrodynam-
ics. If θ is a constant, then the last term in (12) represents a full divergence

˜F µνFµν = ∂µJ
µ
CS (14)

of the Chern-Simons current

Jµ
CS = εµνρσAνFρσ, (15)

which is the Abelian analog of (4). Being a full divergence, this term does
not affect the equations of motion and does not affect the electrodynamics.
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From QCD back to electrodynamics:
Maxwell-Chern-Simons (axion) theory

Axial current
  of quarks

Photons



θ

The first pair of Maxwell equations (which is a consequence of the fact that
the fields are expressed through the vector potential) is not modified:

∂µF̃
µν = Jν . (21)

It is convenient to write down these equations also in terms of the electric "E
and magnetic "B fields:

"∇× "B − ∂ "E

∂t
= "J + c

(
M "B − "P × "E

)
, (22)

"∇ · "E = ρ + c"P · "B, (23)

"∇× "E +
∂ "B

∂t
= 0, (24)

"∇ · "B = 0, (25)

where (ρ, "J) are the electric charge and current densities. One can see that
the presence of Chern-Simons term leads to essential modifications of the
Maxwell theory. Let us look at a few known examples illustrating the dy-
namics contained in Eqs(22),(23),(24),(25).

4.2.1. The Witten effect
Let us consider, following Wilczek [10], a magnetic monopole in the pres-

ence of finite θ angle. In the core of the monopole θ = 0, and away from
the monopole θ acquires a finite non-zero value – therefore within a finite
domain wall we have a non-zero "P = "∇θ pointing radially outwards from
the monopole. According to (23), the domain wall thus acquires a non-zero
charge density c"∇θ · "B. An integral along "P (across the domain wall) yields∫

dl ∂θ/∂l = θ, and the integral over all directions of "P yields the total mag-
netic flux Φ. By Gauss theorem, the flux is equal to the magnetic charge of
the monopole g, and the total electric charge of the configuration is equal to

q = c θ g =
e2

2π2
θ g =

e

2π2
θ (eg) = e

θ

π
, (26)

where we have used an explicit expression (13) for the coupling constant c,
as well as the Dirac condition ge = 2π × integer.
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θ != 0
!B

!E

θ = 0
q = eθ

π

Figure 1: Magnetic monopole at finite θ angle acquires an electric charge ∼ eθ/π that is
localized on the domain wall where the value of θ changes from zero in the core of the
monopole to some value θ "= 0 away from the monopole (the domain wall is shown by the
gray ring) – the Witten effect.

4.2.2. Charge separation effect
Consider now a configuration shown on Fig. where an external magnetic

field !B pierces a domain with θ "= 0 inside; outside θ = 0. Let us assume first
that the field θ is static, θ̇ = 0. Assuming that the field !B is perpendicular
to the domain wall, we find from (23) that the upper domain wall acquires
the charge density per unit area S of

(
Q

S

)

up

= + c θB (27)

while the lower domain wall acquires the same in magnitude but opposite in
sign charge density (

Q

S

)

down

= − c θB (28)
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!P ≡ !∇θ

Magnetic monopole 
at finite    : the Witten effect 

E. Witten;

F. Wilczek

Induced electric charge:

2
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Assuming that the domain walls are thin compared to the distance L between
them, we find that the system possesses an electric dipole moment

de = c θ (B · S) L =
∑

f

q2
f

(
e

θ

π

) (
eB · S

2π

)
L; (29)

in what follows we will for the brevity of notations put
∑

f q2
f = 1; it is easy

to restore this factor in front of e2 when needed.

!B

!E

∼ + eθ
π · eB

2π

∼ − eθ
π · eB

2π

θ != 0

θ = 0

θ = 0

Figure 2: Charge separation effect – domain walls that separate the region of θ != 0 from
the outside vacuum with θ = 0 become charged in the presence of an external magnetic
field, with the surface charge density ∼ eθ/π · eB/2π. This induces an electric dipole
moment signaling P and CP violation.

Static electric dipole moment is a signature of P , T and CP violation (we
assume that CPT invariance holds). The spatial separation of charge will
induce the corresponding electric field #E = c θ #B. The mixing of pseudo-
vector magnetic field #B and the vector electric field #E signals violation of P ,
T and CP invariances.
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The Chiral Magnetic Effect I:
Charge separation  
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DK ’04;
DK, A. Zhitnitsky ’06;
DK arXiv:0911.3715; Annals of Physics (2010)

!P ≡ !∇θ



Note that this current directed along the magnetic field !B represents a P−,
T − and CP− phenomenon and of course is absent in the ”ordinary” Maxwell
equations. Integrating the current density over time (assuming that the field
!B is static) we find that when θ changes from zero to some θ "= 0, this results
in a separation of charge and the electric dipole moment (29).

!B

θ = 0

θ̇ != 0

!J ∼ eθ̇
π · e #B

2π

Figure 3: The chiral magnetic effect – inside a domain with θ̇ "= 0 an external magnetic
field induces an electric current "J ∼ eθ̇/π · e "B/2π. θ̇ "= 0 indicates the change of the chiral
charge inducing an asymmetry between the left– and right– handed fermions inside the
domain. Note that the current "J ∼ "B is absent in Maxwell electrodynamics.

Let us discuss the meaning of formula (30) in more detail. To do this,
let us consider the work done by the electric current; to obtain the work per
unit time – the power P – we multiply both sides of (30) by the electric field
!E and integrate them over the volume (as before, we assume that θ does not
depend on spatial coordinates):

P =

∫
d3x !J · !E = −θ̇

e2

2π2

∫
d3x !E · !B = −θ̇ Q̇5, (31)
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The chiral magnetic effect II:
chiral induction 

DK, L. McLerran, H. Warringa ’07;
K. Fukushima, DK, H. Warringa ’08;
DK, H.Warringa arXiv:0907.5007

!J = − e2

2π2
θ̇ !B



where we have introduced the linear densities of the left- and right-moving
charges.

In a real wire however the electromagnetic fields can propagate in (3+1)
dimensions, while the fermions are restricted to (1 + 1) dimensions. This
means that the chiral charge is still given by (??) and requires the existence
of both electric and magnetic fields. Let us assume that the carriers of charge
move with the Fermi velocity vF . The densities of the right- and left-moving
electric currents are thus

JR = e vF nR; JL = e vF nL. (42)

In (1 + 1) dimensions, the densities are related to the chemical potentials by
µL,R = hvF nL,R, where h is the Planck constant. The net electric current
moving through the wire is therefore

J = JR − JL =
e

h
(µR − µL). (43)

On the other hand, the difference between the chemical potentials for the
left- and right-moving charges is determined by the voltage V applied to the
wire: µR−µL = eV (the anomaly relation tells us that this voltage is created
by the electric field). Therefore, we get

J =
e2

h
V. (44)

Reconciling this with Ohm’s law J = σ V , we find that the conductance σ of
the quantum wire is given by a combination of the fundamental constants:

σ =
e2

h
(45)

5.2. Fermions in external magnetic field

∂µJ
µ =

e2

16π2

(
F µν

L F̃L,µν − F µν
R F̃R,µν

)
(46)

Jµ =
∂ log Z[Aµ, A5

µ]

∂Aµ(x)
(47)

$J =
e

2π2
µ5

$B (48)
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µ5 = A0
5

Computing the induced current
Fukushima, DK, Warringa, ‘08
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Chiral chemical potential is formally 
equivalent to a background chiral gauge field:

In this background, vector e.m. current 
is not conserved:

Compute the current through

The result: Coefficient is fixed 
by the axial anomaly, 
no corrections

22



Right

µR

Left

µL
µL − µR = 2 θ̇

Figure 4: Dirac cones of the left and right fermions. In the presence of the changing chiral
charge there is an asymmetry between the Fermi energies of left and right fermions µL

and µR: µL − µR = 2µ5 = 2θ̇.

momentum, and we are dealing with the right fermions. Likewise, the nega-
tive fermions will be leftt-handed. After time t, the positive (right) fermions
will increase their Fermi momentum to pF

R = eEt, and the negative (left) will
have their Fermi momentum decreased to pF

L = −pF
R. The one-dimensional

density of states along the axis z that we choose parallel to the direction of
fields !E and !B is given by dNR/dz = pF

R/2π. In the transverse direction, the
motion of fermions is quantized as they populate Landau levels in the mag-
netic field. The transverse density of Landau levels is d2NR/dxdy = eB/2π.
Therefore the density of right fermions increases per unit time as

d4NR

dt dV
=

e2

(2π)2
!E · !B. (35)

The density of left fermions decreases with the same rate, d4NL/dt dV =

12

What powers the CME current?

49
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“Numerical evidence for chiral magnetic effect 
in lattice gauge theory”,
P. Buividovich, M. Chernodub, E. Luschevskaya, M. Polikarpov, ArXiv 0907.0494; PRD’09

Red - positive charge
Blue - negative charge



“Chiral magnetic effect in 2+1 flavor QCD+QED”,
M. Abramczyk, T. Blum, G. Petropoulos, R. Zhou,  ArXiv 0911.1348;
Columbia-Bielefeld-RIKEN-BNL

2+1 flavor Domain Wall Fermions, fixed topological sectors, 16^3 x 8 lattice

Red - positive charge
Blue - negative charge



+

-

excess of positive
charge

excess of negative
charge

Electric dipole moment of QCD matter!
DK, Phys.Lett.B633(2006)260 [hep-ph/0406125]

Charge asymmetry w.r.t. reaction plane 
as a signature of local strong P violation



!B !B

P : !p→ −!p; !B → !B; !L→ !L

P - reflection

P-odd

Charge separation = parity violation:
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In Brookhaven Collider, Scientists Briefly Break a Law of 
Nature
  
By DENNIS OVERBYE
Published: February 15, 2010
Physicists said Monday that they had whacked a tiny region of space with enough energy to briefly distort the laws of physics, 
providing the first laboratory demonstration of the kind of process that scientists suspect has shaped cosmic history.

Quark Soup
Physicists create conditions not seen since the big bang.
Feb 16, 2010

30

Sharon Begley

Scientists re-create high temperatures from Big Bang

Hottest Temperature Ever Heads Science to Big Bang

Atom smasher shows vacuum of space 
in a twist

  17:27 15 February 2010 by Rachel Courtland



31 T.Hatsuda

What are the implications for 
the Early Universe?



Magnetic field in M51:
Polarization of emission
Beck 2000

What is the origin of 
cosmic magnetic fields?

Primordial magnetic field 
(E.Fermi, 1949)?

Primordial magnetic field 
generation from P-odd effects 
at the QCD phase transition? 



1. B violation
2. CP violation
3. Non-equilibrium
      dynamics

A.D. Sakharov,
1967

What is the origin  
of the matter-antimatter asymmetry 

in the Universe? 

33

Generation of Chern-Simons number at 
the QCD phase transition is analogous to 
baryon number generation in the 
electroweak phase transition: sphaleron 
transitions are responsible for both



Summary

The existence of topological solutions is an indispensable property 
of non-Abelian gauge theories that form the Standard Model

Local parity violation in the background magnetic field allows        
a direct observation of a topological effect in QCD 

The existence of the Chiral Magnetic Effect (CME) has been 
confirmed in first-principle lattice QCD calculations

There is a recent observation of dynamical fluctuations in charge 
asymmetry at RHIC - an evidence for the CME 
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Talks online at
http://quark.phy.bnl.gov/~kharzeev/cpodd/


