< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Comments on the Stability of SUSY Theories

Jean-François Fortin

Department of Physics, University of California, San Diego La Jolla, CA

May 10-12, 2010 Phenomenology 2010 Symposium

based on arXiv:0906.3714 [hep-th] (Tom Banks, JFF), work in progress (JFF)

Preliminaries 0000	Faith of the False Vacuum	Implications for SUSY Theories	Conclusions O
Outline			

Preliminaries

- SUSY Breaking vs R-symmetry Breaking
- Faith of the False Vacuum without Gravity

2 Faith of the False Vacuum

• Faith of the False Vacuum with Gravity

Implications for SUSY Theories

- Temperature and Entropy of dS Space
- \bullet Stable dS space with $\mathcal{N} < \infty$

4 Conclusions

SUSY Breaking vs R-symmetry Breaking

- Spontaneous SUSY breaking in stable states \rightarrow Exact *R*-symmetry Nelson, Seiberg
 - Unbroken exact *R*-symmetry \Rightarrow Massless gauginos not compatible with experimental constraints
 - Spontaneously broken exact R-symmetry \Rightarrow Massless R-axion not compatible with experimental constraints
- \Rightarrow Need explicit *R*-symmetry breaking

- Spontaneous SUSY breaking in metastable states \rightarrow Approximate *R*-symmetry Intriligator, Seiberg, Shih
 - Approximate R-symmetry \Rightarrow SUSY states far in field space, metastability
 - Unbroken approximate *R*-symmetry ⇒ Massive gauginos from explicit *R*-symmetry breaking

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Spontaneously broken approximate R-symmetry \Rightarrow Massive R-axion from explicit R-symmetry breaking
- Metastable SUSY breaking more generic than stable SUSY breaking
- ⇒ Metastable SUSY breaking with tunneling probability Γ/V compatible with experimental constraints

 Preliminaries
 Faith of the False Vacuum
 Implications for SUSY Theories
 Conclusions

 Sole
 Sole
 Sole
 Sole
 Sole

- Tunneling probability $\Gamma/V = Ae^{-[S_E(\phi) S_E(\phi_F)]}$ Coleman
 - Euclidean action for the instanton solution $S_E(\phi)$
 - Vanishing background Euclidean action $S_E(\phi_F) = 0$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Tunneling probability $\Gamma/V = Ae^{-[S_E(\phi) S_E(\phi_F)]}$ Coleman
 - Euclidean action for the instanton solution $S_E(\phi)$
 - Vanishing background Euclidean action $S_E(\phi_F) = 0$

Eaith of the Ealco Vacuum with Cravity				
0000	●00	000	O	
	Faith of the False Vasuurs	Inaminations for SUSY Theories	Canalusiana	

- Tunneling probability $\Gamma/V = Ae^{-[S_E(\phi) S_E(\phi_F)]}$ Coleman, De Luccia
 - Background Euclidean action $S^{
 m M}_{E}(\phi_{F})=0$ and $S^{
 m dS}_{E}(\phi_{F})<0$
 - Actual "decay" of metastable Minkowski space to AdS space \Rightarrow Gravitational collapse (Big Crunch)
 - Stability of seemingly metastable Minkowski space in thin-wall approximation

 Preliminaries
 Faith of the False Vacuum
 Implications for SUSY Theories
 Conclusion

 Sooo
 Sooo
 Sooo
 Sooo
 Sooo

Space of potentials partitioned in the $V_F \rightarrow 0$ limit $\left(\epsilon \approx \frac{|\Delta \phi|}{M_P}\right)$ Aguirre, Banks, Johnson & Bousso, Freivogel, Lippert

- Below the Great Divide ($\epsilon < \epsilon_{c} \sim \mathcal{O}(1)$)
 - Non-compact instanton
 - Instanton action scales like and comparable to background action \Rightarrow No "extra" decay suppression

 Preliminaries
 Faith of the False Vacuum
 Implications for SUSY Theories
 Conclusions

 Sooo
 Sooo
 Sooo
 Sooo
 Sooo

Space of potentials partitioned in the $V_F \rightarrow 0$ limit $\left(\epsilon \approx \frac{|\Delta \phi|}{M_P}\right)$ Aguirre, Banks, Johnson & Bousso, Freivogel, Lippert

- Above the Great Divide ($\epsilon > \epsilon_{m{c}} \sim \mathcal{O}(1))$
 - Compact instanton
 - Instanton action negligible compared to background action \Rightarrow "Extra" decay suppression of order $\mathcal{O}(e^{S_E^{\mathrm{dS}}(\phi_F)})$

- dS temperature $T_{
 m dS}=rac{1}{2\pi R_{
 m dS}}$ and entropy ${\cal S}_{
 m dS}=\pi (R_{
 m dS}M_P)^2$ Gibbons, Hawking
- $S_E^{
 m dS}(\phi_F) = -S_{
 m dS}$ thus $\Gamma/V = Ae^{-[S_E(\phi) + S_{
 m dS}]}$
- Below the Great Divide

-
$$\Gamma/V = Ae^{-[S_E(\phi) + S_{dS}]} \xrightarrow{\Lambda_{dS} \to 0} \text{finite} > 0$$

- Actual "decay" of metastable dS space to AdS space \Rightarrow Gravitational collapse (Big Crunch)
- No entropic explanation of decay
- Above the Great Divide
 - $\Gamma/V = Ae^{-[S_E(\phi) + S_{\mathrm{dS}}]} \xrightarrow{\Lambda_{\mathrm{dS}} \to 0} Ae^{-S_{\mathrm{dS}}} \approx 0$
 - Decay seen as a Poincaré recurrence instead of an instability

- Entropic explanation of decay

Preliminaries 0000	Faith of the False Vacuum	Implications for SUSY Theories	Conclusions 0
Stable dS	charace with M < a		

Stable dS space with $\mathcal{N} < \infty$

• Quantum theory of stable dS space \Rightarrow Finite number of quantum states $\mathcal{N} < \infty$ (Assumption) Banks, Fischler

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $\Rightarrow\,$ Theory above the Great Divide

- Consequences for models with SUSY breaking in $M_P \rightarrow \infty$ limit (e.g. gauge and gravity mediation)
 - Metastable SUSY breaking with SUSY vacua \Rightarrow AdS space theories with $\Lambda_{\rm AdS}\approx -F^2/M_P^2$
 - $|\Delta \phi| \ll M_P \Rightarrow$ Theory below the Great Divide
- \Rightarrow Spontaneous SUSY breaking in stable states !
 - Generic with (spontaneously broken) exact *R*-symmetry
 - PNGB R-axion with $m_a \approx (F^3/M_P^2)^{1/4} > 10\,{
 m MeV}\,$ Bagger, Poppitz, Randall
 - Gauge mediation $\Rightarrow \sqrt{\textit{F}} \gtrsim 10^5\,{
 m GeV}$
 - Gravity mediation \Rightarrow Cosmologically safe R-axion with $m_a\approx 10^7\,{\rm GeV}$
 - Non-generic superpotential \Rightarrow Cosmological SUSY breaking Banks

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

0000	000	00	0	
Stable dS space with $\mathcal{N} < \infty$ (Assumption)				

- Consequences for models with SUSY breaking in $M_P \rightarrow \infty$ limit (e.g. gauge and gravity mediation)
 - Metastable SUSY breaking with SUSY vacua \Rightarrow AdS space theories with $\Lambda_{\rm AdS}\approx -F^2/M_P^2$
 - $|\Delta \phi| \ll M_P \Rightarrow$ Theory below the Great Divide
- \Rightarrow Spontaneous SUSY breaking in stable states !
 - Generic with (spontaneously broken) exact *R*-symmetry
 - PNGB *R*-axion with $m_a \approx (F^3/M_P^2)^{1/4} > 10 \,{
 m MeV}$ Bagger, Poppitz, Randall
 - Gauge mediation ⇒ √F ≳ 10⁵ GeV
 Gravity mediation ⇒ Cosmologically safe *R*-axion with m_s ≈ 10⁷ GeV
 - Non-generic superpotential \Rightarrow Cosmological SUSY breaking Banks

Preliminaries 0000	Faith of the False Vacuum	Implications for SUSY Theories	Conclusions •
Conclusions			

- $M_P \to \infty$ limit
 - SUSY breaking and *R*-symmetry breaking \Rightarrow Spontaneous SUSY breaking in metastable states
 - Massive gauginos
 - Massive R-axion
- $M_P < \infty$
 - Stable dS space with $\mathcal{N}<\infty$ (Assumption) \Rightarrow Spontaneous SUSY breaking in stable states

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Generic with exact *R*-symmetry
- Non-generic superpotential