Dark matter in models with non-universal gaugino masses

James Younkin

Northern Illinois University

PHENO 2010 Symposium May 11, 2010

This work was done with S.Martin, preprint to appear soon

- Extending mSUGRA to include non-universal gaugino masses can help solve the mu fine-tuning problem. mSUGRA with non-universal gaugino mass parameters is well-motivated by various models of gauge unification.
- In this study, I will scan important regions of non-universal gaugino mass parameter space to find model points with less fine-tuning.
- I will be looking for regions that have small a small μ parameter, relic density of thermal LSP dark matter in the range 0.09 $< \Omega_{DM} h^2 < 0.13$, and that do not violate important constraints.

SUSY μ problem

• At the minimum of the MSSM scalar potential that breaks Electroweak symmetry, a typically large cancellation occurs between the supersymmetry-breaking Higgs mass terms H_u, H_d and the supersymmetry-respecting Higgs mass term μ .

$$m_Z^2 = 2(|m_{H_u}^2| - |\mu|^2) + \mathcal{O}\left(rac{1}{ an^2 eta}
ight) + ext{loop corrections}$$

- Since |µ| can easily reach 1 TeV, it seems unnatural for the supersymmetry-breaking sector to be so finely tuned.
- Expanding in terms of the electroweak scale masses and running them up to the input scale shows that the fine-tuning is greatly exacerbated by the size of the gluino mass parameter [Kane and King 1998].

SUSY μ problem

• Carrying out this procedure (with universal scalar masses) shows that μ as a function of the input scale parameters takes the approximate form

$$\begin{aligned} |\mu|^2 &= \alpha_1 \hat{M}_3^2 - \alpha_2 \hat{M}_2^2 + \alpha_3 \hat{M}_2 \hat{M}_3 - \alpha_4 \hat{M}_3 \hat{A}_t \\ &- \alpha_5 \hat{m}_0 + \text{terms with small coefficients} \end{aligned}$$

where the hats indicate an input scale value and the coefficients $\alpha_i > 0$ will depend on tan β .

- Important features:
 - Decreasing M_3 will lower μ : α_1 tends to be very large and α_3 is usually small
 - Increasing M_2 will lower μ
 - M_1 has a minimal influence on mu
 - Increasing the scalar mass parameter decreases mu

SU(5)-motivated non-universal guagino masses

 Motivated by SU(5) and SO(10) gauge unification, I will consider mSUGRA models in which the F-term that breaks supersymmetry can transform as anything in the symmetric product of the adjoint representation of SU(5) with itself:

$$(24 \times 24)_S = 1 + 24 + 75 + 200$$

- It has been shown that the ratio of the gaugino mass parameters $M_1 : M_2 : M_3$ in these representations are
- 11:1:1755:-3:-1241:3:-220010:2:1● The 24 representation is well-suited to alleviate the mu
problem, since increasing the contribution from this
representation lowers the gaugino mass parameter and
increases the wino mass parameter, thereby lowering |μ|.

Parametrization of non-universality

• In my parametrization, the relative contribution of the singlet and **24** representation to the gaugino masses is given by $\sin \theta_{24}$, where $\sin \theta_{24} = 0$ is mSUGRA and $\sin \theta_{24} = 1$ has a pure **24** F-term.

$\sin \theta_{24}$ parametrization

$$\begin{array}{rcl} M_1 &=& m_{1/2}(\cos\theta_{24}+\sin\theta_{24}) \\ M_2 &=& m_{1/2}(\cos\theta_{24}+3\sin\theta_{24}) \\ M_3 &=& m_{1/2}(\cos\theta_{24}-2\sin\theta_{24}) \end{array}$$

Parametrization of non-universality

• I will scan over slices of parameter space with M_1 held constant so that the other gaugino masses are a function of M_1 and $\sin \theta_{24}$

 $\sin \theta_{24}$ parametrization, fixed M_1

$$M_2 = M_1 \left(\frac{1 + 3 \tan \theta_{24}}{1 + \tan \theta_{24}} \right)$$
$$M_3 = M_1 \left(\frac{1 - 2 \tan \theta_{24}}{1 + \tan \theta_{24}} \right)$$

• I will also make the choice $A_0 = -M_1$ in my scans.

Constraints

- I assume minimal flavor violation in the parameter space and will restrict scans to $sgn(\mu) = 1$.
- The important flavor constraints are $b \rightarrow s\gamma$, $B_S \rightarrow \mu^+\mu^-$, and $B \rightarrow \tau\nu$ through contributions from decays through the charged Higgs boson.

$$egin{array}{rcl} B_{\mathcal{S}}
ightarrow \mu^+ \mu^- &< 4.3 imes 10^{-8} & [{
m CDF} \mbox{ note } 9892] \ b
ightarrow s \gamma &> 2 imes 10^{-4} \ tan eta &< 7.4 rac{m_{H^+}}{100 \ {
m GeV}} & [{
m UTfit, } 2009] \end{array}$$

• We require $m_{h^0} > 113$ GeV and exclude all model points where charged particles are the LSP or violate the approximately 100 GeV LEP bound.

伺 と く ヨ と く ヨ と

• At small m_0 , size of μ parameter governed entirely by M_2, M_3 .

• The μ parameter gets smaller closer to the $M_3 = 0$ line at $\sin \theta_{24} = 1/\sqrt{5} = 0.48$. Increasing m_0 also makes the μ parameter smaller at the electroweak scale (in the focus point region).

- Enhanced annihilation regions: annihilation to tops, focus point, stau co-annihilation, wino co-annihilation
- Solution boundary and $M_1 = 0$ asymptote
- Light higgs eliminates much of the low mu regions.

• Increasing $\tan \beta$ further does not have a qualitative effect on the arrangement of the mu map.

- Higher tan β increases the Higgs mass, but causes low μ regions to violate flavor constraints.
- A^0 funnel has already replaced stop co-annihilation region

The more negative A₀ increases the derivative of μ in the M₃ direction due its dependence on input scale value of -M₃A_t.

- Flavor constraints less problematic at higher M_1
- A^0 funnel moves to the left as tan β increases, eventually intersecting mSUGRA at sin $\theta_{24} = 0$
- Funnel separates a small region, the "confluence island", which has properties of focus point, stau co-annihilation, and funnel regions

- Much of the confluence island lies outside flavor constraints, and has the thickest region in agreement with observed dark matter density.
- The part of the Ωh² < 0.09 region in the A⁰ funnel outside constraints is large and has a relatively small µ and tan β compared to typical mSUGRA A⁰ funnel points.

Younkin

Dark matter in models with non-universal gaugino masses

LSP spin independent cross section

- The dominant limit on direct detection of LSP dark matter is the spin independent cross section.
- Large theoretical uncertainties prevent strict constraint on model points
- All points on the plane
 - $M_1 = -A_0 = 900$,
 - $\tan \beta = 45$ will have $m_{LSP} \approx 380$ GeV.

LSP spin independent cross section

Spin independent cross section v. $\sin \theta_{24}$

• Large sin θ_{24} , small μ regions tend to be approximately within reach of next-generation detectors.

LSP spin independent cross section

Spin independent cross section v. μ parameter

• Confluence island and A^0 funnel have μ as small as focus point without the excessively narrow dark matter allowed region.

Example confluence island model point

• To understand the confluence island better, I will examine a model point on the top of the island close to the flavor constraints.

Confluence island model point

$M_1 = 900 \mathrm{GeV}$	$m_0=870~{ m GeV}$	aneta=45
$A_0 = -900 { m GeV}$	$\sin heta_{24} = 0.2$	$\textit{sgn}(\mu) = 1$

 This point will demonstrate the hybrid nature of the confluence island, the inversion of the Wino-Higgsino hierarchy at positive sin θ₂₄, and the island's typical LHC signature.

LSP annihilation processes

• This point on the confluence island is a mixture of the focus point and Higgs funnel. The relative contributions to dark matter annihilation are

- Like all points in the funnel region, dominant annihilation is to $b\bar{b}$ through pseudoscalar Higgs. This is also the process responsible for annihilation to taus.
- The other annihilation processes are typical of focus point models. The Higgsino content of the LSP is high enough (here, 5%) to allow annihilation or coannihilation to weak vector bosons.

Mass Spectrum

Higgs and R-parity odd sectors $m_0 = 870$, sin $\theta_{24} = 0.2$

- Pseudoscalar Higgs mass approaches twice the LSP mass, characteristic of A⁰ funnel
- Models with $\sin \theta_{24} > 0$ typically have heavy, Wino-like N_4 and C_2 , making these states inaccessible to production or decay processes at the LHC.

Branching fractions

• Assuming dominant LHC production is gluinos, the important tree-level branching fractions are

					$(C_1t (39.8\%))$
		$(\tilde{t}_1 t (87.2\%))$			$\tilde{N}_{3}b$ (24.4%)
ĝ	\rightarrow	$\tilde{b}_1 b$ (12.7%)	$ ilde{b}_1$ –	\rightarrow	$\{ \tilde{N}_2 b \ (24.3\%) \}$
		$(\tilde{c} + (72.20/))$			$\tilde{N}_1 b$ (10.0%)
\tilde{t}_1	\rightarrow	$\int C_1 D (73.3\%)$			$\begin{bmatrix} \tilde{t}_1 W & (1.6\%) \end{bmatrix}$
		$(N_1t (20.7\%))$	<i>Č</i> 1 –	\rightarrow	$\tilde{N}_1 W$ (100%)
Ñ3	\rightarrow	$\tilde{N}_{1}Z$ (100%)	- 1		
<i>~</i> ,		$(\tilde{N}_1 h \ (94.5\%))$			\tilde{C} Z (25.3%)
N_2	\rightarrow	$\tilde{N}_{1}Z$ (5.5%)	<i>Č</i> ₂ –	\rightarrow	$\int C_1 Z (25.1\%)$
					$N_3 VV (25.1\%)$
					(C_1h) (24.3%)

• As with virtually all high $\sin \theta_{24}$ models, the large mass of the Wino-like neutralino and chargino decouples them and sleptons from the LHC.

Model point signature

• For this point, the tree level branching ratios for Standard Model final states resulting from gluino production are

$$\widetilde{g}\widetilde{g} \rightarrow bbbbWWWW + \not{E}_{T}$$
 (85.4%)

$$\tilde{g}\tilde{g} \rightarrow bbbbWWZ + E_T$$
 (6.0%)

$$\tilde{g}\tilde{g} \rightarrow bbbbWWh + E_T$$
 (5.4%)

$$\tilde{g}\tilde{g} \rightarrow bbbbWW + E_T$$
 (2.4%)

 A good signal for this model point is four b-jets plus two like-sign charged leptons.

$$BR(\tilde{g}\tilde{g} \rightarrow 4b + l^+ l^+ / l^- l^- + hadrons + \not{E}_T) \approx 9\%$$

Model point signature

 Occasionally the LHC will produce squark + gluino or squark + squark, but these will produce very similar final states.

$$\begin{split} \tilde{u}_L &\rightarrow \begin{cases} \tilde{g}u & (77.1\%) \\ \tilde{C}_2d & (13.8\%) \end{cases} & \tilde{u}_R &\rightarrow \begin{cases} \tilde{g}u & (71.1\%) \\ \tilde{N}_1u & (27.9\%) \end{cases} \\ \tilde{d}_L &\rightarrow \begin{cases} \tilde{g}d & (77.5\%) \\ \tilde{C}_2u & (14.1\%) \end{cases} & \tilde{d}_R &\rightarrow \begin{cases} \tilde{g}d & (89.8\%) \\ \tilde{N}_1d & (9.8\%) \end{cases} \end{split}$$

- The primary effect of squark production is an additional hard jet in the gluino-gluino final states.
- Chargino / neutralino decays will slightly enhance some of the rarer gluino-gluino final states.

- Non-universal gaugino mass models can help to alleviate mSUGRA fine-tuning problems.
 - Opens up many new small μ regions
 - Large regions where $\Omega_{DM} h^2 < 0.09$ with low μ
- Flavor constraints affect A⁰ funnel region, but large regions of non-universal parameter space survive.
- At relatively high tan β and M₁, there are promising "confluence islands" that are separated from the region containing mSUGRA and have a large area in which the relic density is in the observed range.