Dirac neutrinos from a second Higgs doublet

Shain Davidson Dept. of Physics Carleton University

May 11, 2010

In collaboration with Heather Logan

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Problem: Neutrinos are small

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 「臣」のへ(?)

Model

Field Content:

$$\mathsf{SM} + \Phi_{\nu} = \begin{pmatrix} \phi_{\nu}^{+} \\ (v_{\nu} + \phi_{\nu}^{0,r} + i\phi_{\nu}^{0,i})/\sqrt{2} \end{pmatrix} + \nu_{B_{i}}$$

Symmetry:

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣べ⊙

$$\mathcal{L}_{Y\!\textit{U}k} = -y_{ij}^\ell \bar{e}_{R_i} \Phi^\dagger_{SM} L_{L_j} - y_{ij}^\nu \bar{\nu}_{R_i} \tilde{\Phi}^\dagger_\nu L_{L_j} + \mathrm{h.c.}$$

$$\mathcal{L}_{YUk} = -y_{ij}^{\ell} \bar{e}_{R_i} \Phi_{SM}^{\dagger} L_{L_j} - y_{ij}^{\nu} \bar{\nu}_{R_i} \tilde{\Phi}_{\nu}^{\dagger} L_{L_j} + \text{h.c.}$$

$$-y_{ij}^{\nu} \bar{\nu}_{R_i} \tilde{\Phi}_{\nu}^{\dagger} L_{L_j} = -\frac{y_{ij}^{\nu} v_{\nu}}{\sqrt{2}} \bar{\nu}_{R_i} \nu_{L_j} - \frac{y_{ij}^{\nu}}{\sqrt{2}} \phi_{\nu}^{0,r} \bar{\nu}_{R_i} \nu_{L_j}$$

$$-i \frac{y_{ij}^{\nu}}{\sqrt{2}} \phi_{\nu}^{0,i} \bar{\nu}_{R_i} \nu_{L_j} + y_{ij}^{\nu} \phi_{\nu}^{+} \bar{\nu}_{R_i} \ell_{L_j}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

$$\mathcal{L}_{YUk} = -y_{ij}^{\ell} \bar{e}_{R_i} \Phi_{SM}^{\dagger} L_{L_j} - y_{ij}^{\nu} \bar{\nu}_{R_i} \tilde{\Phi}_{\nu}^{\dagger} L_{L_j} + \text{h.c.}$$

$$-y_{ij}^{\nu} \bar{\nu}_{R_i} \tilde{\Phi}_{\nu}^{\dagger} L_{L_j} = -\frac{y_{ij}^{\nu} v_{\nu}}{\sqrt{2}} \bar{\nu}_{R_i} \nu_{L_j} - \frac{y_{ij}^{\nu}}{\sqrt{2}} \phi_{\nu}^{0,r} \bar{\nu}_{R_i} \nu_{L_j}$$

$$-i \frac{y_{ij}^{\nu}}{\sqrt{2}} \phi_{\nu}^{0,i} \bar{\nu}_{R_i} \nu_{L_j} + y_{ij}^{\nu} \phi_{\nu}^{+} \bar{\nu}_{R_i} \ell_{L_j}$$

$$M_{\nu} = \frac{y_{ij}^{\nu} v_{\nu}}{\sqrt{2}}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

$$\mathcal{L}_{YUK} = -y_{ij}^{\ell} \bar{e}_{R_i} \Phi_{SM}^{\dagger} L_{L_j} - y_{ij}^{\nu} \bar{\nu}_{R_i} \tilde{\Phi}_{\nu}^{\dagger} L_{L_j} + \text{h.c.}$$

$$-y_{ij}^{\nu} \bar{\nu}_{R_i} \tilde{\Phi}_{\nu}^{\dagger} L_{L_j} = -\frac{y_{ij}^{\nu} v_{\nu}}{\sqrt{2}} \bar{\nu}_{R_i} \nu_{L_j} - \frac{y_{ij}^{\nu}}{\sqrt{2}} \phi_{\nu}^{0,r} \bar{\nu}_{R_i} \nu_{L_j}$$

$$-i \frac{y_{ij}^{\nu}}{\sqrt{2}} \phi_{\nu}^{0,i} \bar{\nu}_{R_i} \nu_{L_j} + y_{ij}^{\nu} \phi_{\nu}^{+} \bar{\nu}_{R_i} \ell_{L_j}$$

$$M_{\nu} = \frac{y_{ij}^{\nu} v_{\nu}}{\sqrt{2}}$$

$$V = m_{11}^2 \Phi_{SM}^{\dagger} \Phi_{SM} + m_{22}^2 \Phi_{\nu}^{\dagger} \Phi_{\nu} - \left[m_{12}^2 \Phi_{SM}^{\dagger} \Phi_{\nu} + \text{h.c.}\right]$$

$$+ \frac{1}{2} \lambda_1 \left(\Phi_{SM}^{\dagger} \Phi_{SM}\right)^2 + \frac{1}{2} \lambda_2 \left(\Phi_{\nu}^{\dagger} \Phi_{\nu}\right)^2$$

$$+ \lambda_3 \left(\Phi_{SM}^{\dagger} \Phi_{SM}\right) \left(\Phi_{\nu}^{\dagger} \Phi_{\nu}\right) + \lambda_4 \left(\Phi_{SM}^{\dagger} \Phi_{\nu}\right) \left(\Phi_{\nu}^{\dagger} \Phi_{SM}\right)$$

E IQC

Symmetry breaking

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Particles

Dirac neutrinos:

 $\nu_1 \ \nu_2 \ \nu_3$

Scalar particles:

 $h H^{\pm} H^0 A^0$

mixing of order: $\frac{v_{\nu}}{v_{SM}}$

 $\mathcal{L}_{Y_{Uk}} = \frac{m_{\nu_i}}{v_{\nu}} H^0 \bar{\nu}_i \nu_i - \frac{im_{\nu_i}}{v_{\nu}} A^0 \bar{\nu}_i \gamma_5 \nu_i - \sqrt{2} \frac{m_{\nu_i}}{v_{\nu}} [U_{\ell i}^* H^+ \bar{\nu}_i P_L e_{\ell} + \text{h.c.}]$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Neutrino mixing

Free Contraction	"normal" hierarchy		"inverted" hierarchy	
	V ₃	1	V2	
increasing		increasing mass		
I	V2		V ₃	
v _e → electron neu v _μ → muon neutrir v _τ → tau neutrino	trino flavor no flavor flavor			

stolen from Berkeley Lab

H^+ decay

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Processes

Signal:

$$pp
ightarrow H^+H^-
ightarrow \ell^+
u \ell^- ar{
u}$$

Background:

$$pp \rightarrow VV \rightarrow \ell^+ \nu \ell^- \bar{\nu}; V = W, Z, \text{ or } \gamma$$

 $pp \rightarrow t\bar{t} \rightarrow \ell^+ \nu \ell^- \bar{\nu} b\bar{b}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Simulate events with MadGraph/MadEvent

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Simulate events with MadGraph/MadEvent $$\downarrow$$ Pass events through PYTHIA/PGS

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Simulate events with MadGraph/MadEvent ↓ Pass events through PYTHIA/PGS ↓ Apply cuts

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Significance at LHC for $M_{H^+} = 100 \text{ GeV}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Significance at LHC for $M_{H^+} = 300 \text{ GeV}$

Conclusion

- Model explains small neutrino masses
- Has the possibility of being detected at LHC

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Cuts

Cut name	Explanation
Basic cuts	Present are a lepton and antilepton, both with $p_{\ell} >$
	20 GeV Also $p^{miss} > 30$ GeV For parton level
	there is cut applied so that $ n_2 < 3.0$ and $ n_1 < 2.4$
Jet veto	Designed to reduce $t\bar{t}$ background any event with a
	ist of $p^{jet} > 30$ GeV was cut. For parton level, the
	yeto is only applied when $ n_{t,t} < 5.0$
Z polo voto	To eliminate events that include $Z \rightarrow \ell^+ \ell^-$ we
	To emininate events that include $Z \rightarrow \ell^{+}\ell^{-}$, we
	veto events with the invariant mass of the two lep-
	tons between 80 GeV and 100 GeV (applied only to
	$e^+e^-p_T^{miss}$ and $\mu^+\mu^-p_T^{miss}$ final state events).
H_T' cut	To eliminate the background mediated by $W/Z/\gamma$,
	we make use of the mass difference of these par-
	ticles versus H^+ , and also the spin difference of
	these particles (1) versus H^+ (0). It was found
	that the best way to accomplish this was to cut on
	$H'_{-} = p_{-}^{\ell^+} + p_{-}^{\ell^-} + p_{-}^{miss}$ For $M_{\ell_{-}} - 100$ GeV we
	$\mu_T = \mu_T + \mu_T + \mu_T$. To $\mu_{H^+} = 100 \text{ GeV}$, we require $\mu' > 200 \text{ GeV}$ and for $M_{\pm} = 200 \text{ GeV}$
	require $n_T > 200$ GeV, and for $M_{H^+} = 500$ GeV,
	$H_T^{\prime} > 600$ GeV.

Next-to-leading order (NLO)

$$|\mathcal{M}|_{NLO}^{2} = |\mathcal{M}_{LO} + \mathcal{M}_{1-loop}|^{2} + |\mathcal{M}|_{1-jet}^{2}$$
$$\sigma_{NLO} = k\sigma_{LO} + \sigma_{1-jet}$$
$$\sigma_{NLO} = m\sigma_{LO}^{cut} + n\sigma_{1-jet}^{cut}$$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○