CP transformations

Effective supersymmetric THDM's 00

Conclusion o

Studies of the general THDM

M. Maniatis in collab. with O. Nachtmann, E. Ma, A. Manteuffel

Madison 2010

M. Maniatis

University of Heidelberg

The two-Higgs-doublet model (THDM)

- **CP** transformations
- Effective supersymmetric THDM's

M. Maniatis

The two-Higgs-doublet model

M. Maniatis

University of Heidelberg

CP transformations

In the SM we have one Higgs doublet

$$\varphi = \begin{pmatrix} \varphi^+ \\ \varphi^0 \end{pmatrix}.$$

SM Higgs potential

$$V = -m (\varphi^{\dagger}\varphi) + \lambda (\varphi^{\dagger}\varphi)^{2}.$$

In the THDM the Higgs sector is extended

$$\varphi_1 = \begin{pmatrix} \varphi_1^+ \\ \varphi_1^0 \end{pmatrix}, \quad \varphi_2 = \begin{pmatrix} \varphi_2^+ \\ \varphi_2^0 \end{pmatrix}$$

Prominent example: Susy models like the MSSM

M. Maniatis

THDM Higgs potential

[J. F. Gunion, H. E. Haber, G. L. Kane and S. Dawson, "The Higgs Hunter's Guide", 1990]

$$\begin{split} V &= m_{11}^{2} \varphi_{1}^{\dagger} \varphi_{1} + m_{22}^{2} \varphi_{2}^{\dagger} \varphi_{2} - \left[m_{12}^{2} \varphi_{1}^{\dagger} \varphi_{2} + h.c. \right] \\ &+ \frac{\lambda_{1}}{2} (\varphi_{1}^{\dagger} \varphi_{1})^{2} + \frac{\lambda_{2}}{2} (\varphi_{2}^{\dagger} \varphi_{2})^{2} \\ &+ \lambda_{3} (\varphi_{1}^{\dagger} \varphi_{1}) (\varphi_{2}^{\dagger} \varphi_{2}) + \lambda_{4} (\varphi_{1}^{\dagger} \varphi_{2}) (\varphi_{2}^{\dagger} \varphi_{1}) \\ &+ \left[\frac{\lambda_{5}}{2} (\varphi_{1}^{\dagger} \varphi_{2})^{2} + \lambda_{6} (\varphi_{1}^{\dagger} \varphi_{1}) (\varphi_{1}^{\dagger} \varphi_{2}) + \lambda_{7} (\varphi_{2}^{\dagger} \varphi_{2}) (\varphi_{1}^{\dagger} \varphi_{2}) + h.c. \right], \end{split}$$

with m_{11}^2 , m_{22}^2 , $\lambda_{1/2/3/4}$ real and m_{12}^2 , $\lambda_{5/6/7}$ complex.

M. Maniatis

University of Heidelberg

The THDM ○○●○○○○○○○○	CP transformations	Effective supersymmetric THDM's	Conclusion o
Bilinears			

F. Nagel phD thesis Uni Heidelberg, www.ub.uni-heidelberg.de/archiv/4803 (2004) O. Nachtmann, A. Manteuffel, M.M. EPJC 48 (2006)

Nishi PRD 74 (2006)

► General SU(2)_L × U(1)_Y gauge invariant terms of the potential for doublets:

$$\varphi_i^{\dagger}\varphi_j, \qquad (i,j=1,2).$$

 Arrange invariant scalar products into Hermitian 2 × 2 matrix

$$\underline{K} := egin{pmatrix} arphi_1^\dagger arphi_1 & arphi_2^\dagger arphi_1 \ arphi_1^\dagger arphi_2 & arphi_2^\dagger arphi_2 \end{pmatrix}.$$

 Decomposition, using completeness of the Pauli matrices and 1₂

$$\underline{K}_{ij} = \frac{1}{2} \left(K_0 \,\delta_{ij} + K_a \,\sigma^a_{ij} \right).$$

M. Maniatis

4 real coefficients - bilinears - defined by this decomposition

$$K_0 = \varphi_i^{\dagger} \varphi_i, \qquad K_a = (\varphi_i^{\dagger} \varphi_j) \sigma_{ij}^a, \quad (a = 1, 2, 3).$$

▶ The matrix <u>K</u> is positive semi-definite, which implies

$$K_0 \ge 0, \qquad K_0^2 - K_1^2 - K_2^2 - K_3^2 \ge 0.$$

Inversion reads

$$\begin{aligned} \varphi_1^{\dagger}\varphi_1 &= (K_0 + K_3)/2, \qquad \varphi_1^{\dagger}\varphi_2 &= (K_1 + iK_2)/2, \\ \varphi_2^{\dagger}\varphi_2 &= (K_0 - K_3)/2, \qquad \varphi_2^{\dagger}\varphi_1 &= (K_1 - iK_2)/2. \end{aligned}$$

M. Maniatis

University of Heidelberg

 CP transformations

Effective supersymmetric THDM's 00

1 ---- 1

Conclusion o

In terms of

$$K_0, \qquad K \equiv \begin{pmatrix} K_1 \\ K_2 \\ K_3 \end{pmatrix}$$

the most general potential can now be written

$$V = \xi_0 K_0 + \boldsymbol{\xi}^{\mathrm{T}} \boldsymbol{K} + \eta_{00} {K_0}^2 + 2K_0 \,\boldsymbol{\eta}^{\mathrm{T}} \boldsymbol{K} + \boldsymbol{K}^{\mathrm{T}} \boldsymbol{E} \boldsymbol{K}$$

with real parameters

$$\xi_{0}, \quad \eta_{00}, \quad \boldsymbol{\xi} = \begin{pmatrix} \xi_{1} \\ \xi_{2} \\ \xi_{3} \end{pmatrix}, \quad \boldsymbol{\eta} = \begin{pmatrix} \eta_{1} \\ \eta_{2} \\ \eta_{3} \end{pmatrix}, \quad \boldsymbol{E} = \boldsymbol{E}^{\mathrm{T}} = \begin{pmatrix} \eta_{11} & \eta_{12} & \eta_{13} \\ \eta_{12} & \eta_{22} & \eta_{23} \\ \eta_{13} & \eta_{23} & \eta_{33} \end{pmatrix}$$

M. Maniatis

University of Heidelberg

We can even go ahead and write in an abstract Minkowski space

$$K = \begin{pmatrix} K_0 \\ K_1 \\ K_2 \\ K_3 \end{pmatrix} \quad \text{with } K_{\alpha} K_{\alpha} \ge 0, \quad \alpha = 0, ..., 3$$

The potential can thus be written in a very symmetric form with real parameters, ξ_α, η_{αβ} = η_{βα}, α, β = 0, ..., 3.

 $V = \xi_{\alpha} K_{\alpha} + \eta_{\alpha\beta} K_{\alpha} K_{\beta}$

M. Maniatis

 CP transformations

Effective supersymmetric THDM's 00

Conclusion o

Example: Maximally CP symmetric model

We consider the THDM with the Higgs potential

$$\begin{split} V(\varphi_1,\varphi_2) &= m_{11}^2 \left(\varphi_1^{\dagger}\varphi_1 + \varphi_2^{\dagger}\varphi_2 \right) \\ &+ \frac{1}{2}\lambda_1 \left((\varphi_1^{\dagger}\varphi_1)^2 + (\varphi_2^{\dagger}\varphi_2)^2 \right) \\ &+ \lambda_3 (\varphi_1^{\dagger}\varphi_1) (\varphi_2^{\dagger}\varphi_2) + \lambda_4 (\varphi_1^{\dagger}\varphi_2) (\varphi_2^{\dagger}\varphi_1) \\ &+ \frac{1}{2}\lambda_5 \left((\varphi_1^{\dagger}\varphi_2)^2 + (\varphi_2^{\dagger}\varphi_1)^2 \right), \end{split}$$

- Parameters m_{11}^2 , λ_1 , λ_3 , λ_4 , λ_5 are real.
- Potential invariant under $\varphi_1 \rightarrow -\varphi_1$.

M. Maniatis

University of Heidelberg

 CP transformations

Effective supersymmetric THDM's

Conclusion o

Translation to bilinears.

$$\eta_{00} = \frac{1}{4} (\lambda_1 + \lambda_3), \qquad \boldsymbol{\xi} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \qquad \boldsymbol{\eta} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix},$$
$$\boldsymbol{\xi}_0 = m_{11}^2, \qquad \boldsymbol{E} = \frac{1}{4} \begin{pmatrix} \lambda_4 + \lambda_5 & 0 & 0 \\ 0 & \lambda_4 - \lambda_5 & 0 \\ 0 & 0 & \lambda_1 - \lambda_3 \end{pmatrix}.$$

M. Maniatis

University of Heidelberg

Change of b	oasis		
The THDM oooooooooooo	CP transformations	Effective supersymmetric THDM's	Conclusion o

Consider the following mixing of the doublets

$$\begin{pmatrix} \varphi_1' \\ \varphi_2' \end{pmatrix} = U \begin{pmatrix} \varphi_1 \\ \varphi_2 \end{pmatrix}.$$

with unitary 2×2 matrix U.

The bilinears transform as

$$K_0' = K_0, \qquad K_a' = R_{ab}(U)K_b,$$

where R is defined by

$$U^{\dagger}\sigma^{a}U = R_{ab}\,\sigma^{b}.$$

with matrix $R \in SO(3)$, that is proper rotations in *K*-space.

M. Maniatis

University of Heidelberg

The THDM 000000000●0

• Under a change of basis K = RK' the THDM potential remains invariant if we transform the parameters

$$\xi_{0} = \xi'_{0}, \qquad \xi = R \xi', \eta_{00} = \eta'_{00}, \qquad \eta = R \eta', E = R E' R^{T}.$$

$$V = \xi_0 K_0 + \boldsymbol{\xi}^{\mathrm{T}} \boldsymbol{K} + \eta_{00} {K_0}^2 + 2K_0 \, \boldsymbol{\eta}^{\mathrm{T}} \boldsymbol{K} + \boldsymbol{K}^{\mathrm{T}} \boldsymbol{E} \boldsymbol{K}$$

M. Maniatis

The THDM oooooooooooooo

• Under a change of basis K = RK' the THDM potential remains invariant if we transform the parameters

$$\xi_{0} = \xi'_{0}, \qquad \xi = R \xi', \eta_{00} = \eta'_{00}, \qquad \eta = R \eta', E = R E' R^{T}.$$

$$V = \xi_0 K_0 + \xi^{\mathrm{T}} \mathbf{K} + \eta_{00} {K_0}^2 + 2K_0 \eta^{\mathrm{T}} \mathbf{K} + \mathbf{K}^{\mathrm{T}} \mathbf{E} \mathbf{K}$$

= $\xi_0' K_0' + \xi'^{\mathrm{T}} \mathbf{R}^{\mathrm{T}} \mathbf{R} \mathbf{K}' + \eta_{00}' K_0'^2 + 2K_0' \eta'^{\mathrm{T}} \mathbf{R}^{\mathrm{T}} \mathbf{R} \mathbf{K}' + \mathbf{K}'^{\mathrm{T}} \mathbf{R}^{\mathrm{T}} \mathbf{R} \mathbf{E}' \mathbf{R}^{\mathrm{T}} \mathbf{R} \mathbf{K}'$

M. Maniatis

• Under a change of basis K = RK' the THDM potential remains invariant if we transform the parameters

$$\xi_{0} = \xi'_{0}, \qquad \xi = R \xi', \\ \eta_{00} = \eta'_{00}, \qquad \eta = R \eta', \\ E = R E' R^{T}.$$

$$V = \xi_0 K_0 + \xi^{T} K + \eta_{00} K_0^{2} + 2K_0 \eta^{T} K + K^{T} E K$$

= $\xi_0' K_0' + \xi'^{T} R^{T} R K' + \eta'_{00} K_0'^{2} + 2K_0' \eta'^{T} R^{T} R K' + K'^{T} R^{T} R E' R^{T} R K'$
= $\xi_0 K_0 + \xi'^{T} K' + \eta_{00} K_0^{2} + 2K_0 \eta'^{T} K' + K'^{T} E' K'$

M. Maniatis

CP transformations

Effective supersymmetric THDM's

Conclusion o

Electroweak symmetry breaking

Nachtmann, A. Manteuffel, M.M. EPJC 48 (2006)
EWSB given by Minkowski space structure of bilinears.

M. Maniatis

University of Heidelberg

CP transformations

M. Maniatis

University of Heidelberg

The	THE	DM	
000			

J.F.Gunion, H.E.Haber Phys.Rev.D72 (2005), I.F.Ginzburg, M.Krawczyk Phys.Rev.D72 (2005), Nishi **PRD 74** (2006), O. Nachtmann, A. Manteuffel, MM **EPJ C57** (2008)

$$\varphi_i(x) \xrightarrow{\operatorname{CP}_s} \varphi_i^*(x'), \quad i=1,2$$

with
$$x \to x'$$
, that is $\begin{pmatrix} x_0 \\ x \end{pmatrix} \to \begin{pmatrix} x_0 \\ -x \end{pmatrix}$

In terms of the bilinears this reads

$$K_0 \xrightarrow{\operatorname{CP}_{\mathrm{s}}} K_0, \quad \begin{pmatrix} K_1 \\ K_2 \\ K_3 \end{pmatrix} \xrightarrow{\operatorname{CP}_{\mathrm{s}}} \begin{pmatrix} K_1 \\ -K_2 \\ K_3 \end{pmatrix}$$

• This is a reflection on the 1-3 plane, \bar{R}_2 .

٠

THDM	CP transformations	Effective supersymmetric THDM's
	00000	

O. Nachtmann, A. Manteuffel, M.M. EPJ C57 (2007)

C.C. Nishi PRD 74 (2007)

Conclusion

CP invariance conditions - basis invariant.

 $\boldsymbol{\xi}^{\mathrm{T}} E (\boldsymbol{\xi} \times \boldsymbol{\eta}) = 0, \qquad (E \boldsymbol{\xi})^{\mathrm{T}} E (\boldsymbol{\xi} \times (E \boldsymbol{\xi})) = 0, \\ \boldsymbol{\eta}^{\mathrm{T}} E (\boldsymbol{\xi} \times \boldsymbol{\eta}) = 0, \qquad (E \boldsymbol{\eta})^{\mathrm{T}} E (\boldsymbol{\eta} \times (E \boldsymbol{\eta})) = 0.$

Potential is explicitly CP conserving if and only if these conditions are fulfilled.

 Real parameters in conventional notation is only a sufficient condition for CP conservation.

M. Maniatis

CP transformations

Effective supersymmetric THDM's 00

Conclusion o

G.Ecker, W.Grimus, W.Konetschny, Nucl.Phys.B191 (1981)

Generalized CP transformations

$$\varphi_i(x) \xrightarrow{\operatorname{CP}_g} U_{ij} \varphi_j^*(x'), \quad i,j=1,2$$

O. Nachtmann, A. Manteuffel, MM EPJC 57 (2007), O. Nachtmann, M.M JHEP 0905 (2009)

The bilinears transform as

$$K_0 \xrightarrow{\mathrm{CP}_{\mathrm{g}}} K_0, \quad K \xrightarrow{\mathrm{CP}_{\mathrm{g}}} \bar{R} K$$

with improper rotation \bar{R}_{φ} .

• Requiring $\bar{R}^2 = \mathbb{1}_3$ there are two types

(*i*)
$$\bar{R} = -\mathbb{1}_3$$
, point reflection

(*ii*) $\bar{R} = R^{T} \bar{R}_{2} R$, orthogonal equivalent to \bar{R}_{2} reflection

M. Maniatis

University of Heidelberg

CP transformations

Effective supersymmetric THDM's

Conclusion o

Maximally CP invariant THDM

THDM - invariant under point reflections

THDM potential

$$V = \xi_0 K_0 + \xi K + \eta_{00} K_0^2 + 2 \kappa_0 \eta^T K + K^T E K,$$

• that is we have to have $\xi = \eta = 0$.

M. Maniatis

University of Heidelberg

- Consider Yukawa coupling of Higgs sector to fermions
- At least two families necessary in order to have non-vanishing couplings.
- Absence of FCNC fixes then all couplings.
- Yukawa coupling to second fermion generation with strength proportional to third generation mass!

M. Maniatis

 10^{-7}

0

100

200 300

 $m_{h''}$ [GeV]

M. Maniatis

University of Heidelberg

600

400 500

Studies of the THDM

0.

100

200 300 400 500 600 700 800 900 1000

 m_{Higgs} [GeV]

CP transformations

Effective supersymmetric THDM's

Conclusion o

Effective supersymmetric THDM's

M. Maniatis

University of Heidelberg

Effective supersymmetric THDM's •o

Effective supersymmetric THDM's

E. Ma, MM to be published

MSSM superpotential

$$W_{\mathsf{Higgs}}^{\mathsf{MSSM}} = \mu(H_u^{\mathrm{T}} \epsilon H_d)$$

• The μ problem leads to singlet extensions.

 $W_{\text{Higgs}}^{\text{UMSSM}} = f(H_u^{\text{T}} \epsilon H_d) S, \qquad W_{\text{Higgs}}^{\text{NMSSM}} = f(H_u^{\text{T}} \epsilon H_d) S + \frac{\kappa}{3} S^3$

- μ term is generated dynamically via $\mu = fu$, with $u = \langle S \rangle$.
- In the limit of u >> v the UMSSM and NMSSM become effective THDM's.

M. Maniatis

Upper bounds on the lightest CP even Higgs boson mass:

M. Maniatis

University of Heidelberg

The THDM	CP transformations	Effective supersymmetric THDM's	Conclusion ●
Conclusion			

- Bilinears are very powerfull to describe the THDM.
- Stability, Stationarity, EWSB are easily studied.
- Moreover, CP transformations have a simple geometric interpretation.
- Effective supersymmetric THDM's were compared.
- In the limit of ⟨S⟩ >> v the upper bound on m_{H1} is enhanced in the UMSSM.
- Thank you for your attention!

M. Maniatis

Translation of Higgs hypercharges

- In SUSY models the Higgs doublets (*H_u* and *H_d*) carry hypercharges y = +1/2 and y = −1/2.
- This can be translated to the convention used here by

$$\begin{split} \varphi_1^{\alpha} &= -\epsilon_{\alpha\beta} (H_u^{\beta})^*, \\ \varphi_2^{\alpha} &= H_d^{\alpha} \end{split}$$

with doublets

$$\varphi_i(x) = \begin{pmatrix} \varphi_i^+(x) \\ \varphi_i^0(x) \end{pmatrix}$$
 $(i = 1, 2).$

M. Maniatis

University of Heidelberg

$\overline{SU(2)}_L \times U(1)_Y$ breaking

► $SU(2)_L \times U(1)_Y$ breaking behavior in terms of K_0, K_1, K_2, K_3

$$\underline{K} := \begin{pmatrix} \varphi_1^{\dagger} \varphi_1 & \varphi_2^{\dagger} \varphi_1 \\ \varphi_1^{\dagger} \varphi_2 & \varphi_2^{\dagger} \varphi_2 \end{pmatrix}, \qquad \varphi_1 = \begin{pmatrix} \varphi_1^+ \\ \varphi_1^0 \end{pmatrix}, \quad \varphi_2 = \begin{pmatrix} \varphi_2^+ \\ \varphi_2^0 \end{pmatrix}$$

We have

$$\operatorname{Tr} \underline{K} = \varphi_1^{\dagger} \varphi_1 + \varphi_2^{\dagger} \varphi_2 = K_0 \ge 0$$
$$\det \underline{K} = (\varphi_1^{\dagger} \varphi_1)(\varphi_2^{\dagger} \varphi_2) - (\varphi_2^{\dagger} \varphi_1)(\varphi_1^{\dagger} \varphi_2) = K_0^2 - K_1^2 - K_2^2 - K_3^2 \ge 0$$

► K₀, K restricted to lie in forward light cone.

M. Maniatis

Hypercharge

Different domains with respect to EWSB. Consider minimum with

$$K_0 = K_1 = K_2 = K_3 = 0$$

$$K_0^2 > K_1^2 + K_2^2 + K_3^2$$

$$K_0^2 = K_1^2 + K_2^2 + K_3^2$$

 $arphi_1 = arphi_2 = 0$ $SU(2)_L imes U(1)_Y$ unbroken

 φ_1, φ_2 linear independent Not possible to arrange $\varphi_1^+ = \varphi_2^+ = 0$ $SU(2)_L \times U(1)_Y$ fully broken

 φ_1, φ_2 linear dependent Possible to arrange $\varphi_1^+ = \varphi_2^+ = 0$ $SU(2)_L \times U(1)_Y$ partially broken.

M. Maniatis

THDM invariant under point reflections

In conventional notation we end up with

$$\begin{split} V(\varphi_1,\varphi_2) &= m_{11}^2 \left(\varphi_1^{\dagger} \varphi_1 + \varphi_2^{\dagger} \varphi_2 \right) + \frac{\lambda_1}{2} \left((\varphi_1^{\dagger} \varphi_1)^2 + (\varphi_2^{\dagger} \varphi_2)^2 \right) \\ &+ \lambda_3 (\varphi_1^{\dagger} \varphi_1) (\varphi_2^{\dagger} \varphi_2) + \lambda_4 (\varphi_1^{\dagger} \varphi_2) (\varphi_2^{\dagger} \varphi_1) \\ &+ \frac{\lambda_5}{2} \left((\varphi_1^{\dagger} \varphi_2)^2 + (\varphi_2^{\dagger} \varphi_1)^2 \right) \end{split}$$

invariant under the four generalised $\ensuremath{CP_g}$ transformations

$$\varphi_i(x) \xrightarrow{\operatorname{CP}_g} W_{ij} \varphi_j^*(x')$$

M. Maniatis

Unitary gauge

In the unitary gauge we have

$$\varphi_1(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ v_0 + \rho'(x) \end{pmatrix}, \quad \varphi_2(x) = \begin{pmatrix} H^+(x)\\ \frac{1}{\sqrt{2}}(h'(x) + ih''(x)) \end{pmatrix}$$

real fields: $\rho'(x)$, h'(x) and h''(x)charged fields: $H^+(x)$, $H^-(x) \equiv (H^+(x))^*$

M. Maniatis

- Consider Yukawa coupling of Higgs sector to fermions
- At least two families necessary in order to have non-vanishing couplings.
- Absence of FCNC and non-vanishing masses fixes couplings.
- Yukawa couplings

$$\mathscr{L}_{\operatorname{Yuk},l}(x) = -c_{l3} \left\{ \bar{l}_{3R}(x) \varphi_1^{\dagger}(x) \begin{pmatrix} \nu_{3L}(x) \\ l_{3L}(x) \end{pmatrix} - \bar{l}_{2R}(x) \varphi_2^{\dagger}(x) \begin{pmatrix} \nu_{2L}(x) \\ l_{2L}(x) \end{pmatrix} \right\} + c.c.$$

- ► Via EWSB c_{l3} fixed, $m_{l_3} = c_{l3} \frac{v}{\sqrt{2}}$, $v \approx 246$ GeV.
- Yukawa coupling to second fermion generation with strength proportional to third generation mass!

Yukawa coupling to one family

 Suppose, we couple one family of fermions to the Higgs doublets

$$\mathscr{L}_{\text{Yuk}}(x) = -\bar{l}_{1R}(x) c_{li} \varphi_i^{\dagger}(x) \begin{pmatrix} \nu_{1L}(x) \\ l_{1L}(x) \end{pmatrix} + h.c.$$

with c_{li} arbitrary complex numbers

• General ansatz for the $CP_g^{(i)}$ transformations of the fermions

$$\begin{pmatrix} \nu_{1L}(x) \\ l_{1L}(x) \end{pmatrix} \to e^{i\xi_1} \gamma^0 S(C) \begin{pmatrix} \overline{\nu}_{1L}^{\mathrm{T}}(x') \\ \overline{l}_{1L}^{\mathrm{T}}(x') \end{pmatrix}$$
$$l_{1R}(x) \to e^{i\xi_2} \gamma^0 S(C) \overline{l}_{1R}^{\mathrm{T}}(x') ,$$

(γ^0 and $S(C) := i\gamma^2\gamma^0$ as usual)

The Yukawa coupling is invariant under the CP⁽ⁱ⁾ transformations only for

University of Heidelberg

M. Maniatis

Yukawa coupling to two families

 Suppose, we couple two families of fermions to the Higgs doublets

$$\mathscr{L}_{\text{Yuk}}(x) = -\bar{l}_{\alpha R}(x) C_{l\alpha\beta}^{(j)} \varphi_j^{\dagger}(x) \begin{pmatrix} \nu_{\beta L}(x) \\ l_{\beta L}(x) \end{pmatrix}, \quad \alpha, \beta = 2, 3$$

with $C_l^{(1)}$ and $C_l^{(2)}$ complex matrices.

By field redefinitions one can always arrange that

$$C_l^{(1)} = \begin{pmatrix} c_{l2}^{(1)} & 0\\ 0 & c_{l3}^{(1)} \end{pmatrix}, \quad c_{l2}^{(1)} \ge 0, \quad c_{l3}^{(1)} \ge 0;$$

Also the CPg transformations may mix the families in this case

$$\begin{pmatrix} \nu_{\alpha L}(x) \\ l_{\alpha L}(x) \end{pmatrix} \to U_{L \alpha \beta}^{(l)} \gamma^0 S(C) \left(\bar{\nu}_{\beta L}^{\mathrm{T}}(x'), \bar{l}_{\beta L}^{\mathrm{T}}(x') \right) ,$$

M. Maniatis

University of Heidelberg

Yukawa coupling Lagrangian

We end up with the Yukawa coupling

$$\mathscr{L}_{\text{Yuk},l}(x) = -c_{l\,3}^{(1)} \left\{ \bar{l}_{3\,R}(x) \,\varphi_1^{\dagger}(x) \begin{pmatrix} \nu_{3\,L}(x) \\ l_{3\,L}(x) \end{pmatrix} - \bar{l}_{2\,R}(x) \,\varphi_2^{\dagger}(x) \begin{pmatrix} \nu_{2\,L}(x) \\ l_{2\,L}(x) \end{pmatrix} \right\} + h.c.$$

After EWSB we get finally

$$\begin{aligned} \mathscr{L}_{\text{Yuk},l}(x) &= -m_{l3} \left(1 + \frac{\rho'(x)}{\nu_0} \right) \bar{l}_3(x) \, l_3(x) \\ &+ \frac{m_{l3}}{\nu_0} \, h'(x) \, \bar{l}_2(x) \, l_2(x) + i \frac{m_{l3}}{\nu_0} \, h''(x) \, \bar{l}_2(x) \gamma_5 l_2(x) \\ &+ \frac{\sqrt{2} \, m_{l3}}{\nu_0} \left[H^+(x) \, \bar{\nu}_2(x) \omega_R l_2(x) \right. + H^-(x) \, \bar{l}_2(x) \omega_L \nu_2(x) \right] \end{aligned}$$

- ▶ Higgs—fermion couplings for II. family is prop. to *m*₁₃
- The quark couplings are derived analogously.

M. Maniatis

University of Heidelberg

Higgs decay

Study of Higgs decay

 $H_1(k) \to f'(p_1) + \bar{f}(p_2)$

- Decay rates can easily calculated from Lagrangian
- For the dominant contributions

$$h' \to c\bar{c}, \quad h'' \to c\bar{c}, \quad H^+ \to c\bar{s}, \quad H^- \to s\bar{c}$$

we find rates of $\Gamma \approx 12$ GeV for $m_{H_1} = 200$ GeV.

Study of Higgs decays

$$H_1(k) \to H_2(p_1) + V(p_2)$$

We find that this decay rates become relevant only for a very heavy Higgs boson.

M. Maniatis

~~~~~

Decay of neutral Higgs bosons into a gluon pair

$$\begin{array}{c} H_{1}(k) \to G(p_{1}) + G(p_{2}) \\ \bullet \text{ Calculation yields, i.e. for } h' \\ \Gamma(h' \to G + G) &= \frac{\alpha_{s}^{2}m_{h'}}{32\pi^{3}} \left| \frac{2m_{t}m_{c}}{v_{0}m_{h'}}I\left(\frac{4m_{c}^{2}}{m_{h'}^{2}}\right) + \frac{2m_{b}m_{s}}{v_{0}m_{h'}}I\left(\frac{4m_{s}^{2}}{m_{h'}^{2}}\right) \right|^{2} \\ I(z) &= \int_{0}^{1} dv \frac{1-v}{z-v-i\epsilon} \ln\left(\frac{1+\sqrt{1-v}}{1-\sqrt{1-v}}\right) \\ &= 2 + (1-z) \begin{cases} -\frac{1}{2} \left[ \ln\left(\frac{1+\sqrt{1-z}}{1-\sqrt{1-z}}\right) - i\pi \right]^{2} & \text{for } 0 < z < 1 \\ 2 [\arcsin(\sqrt{1/z})]^{2} & \text{for } z \ge 1 \end{cases} \end{cases}$$

This gives again tiny decay rates.

### Higgs boson production in Drell-Yan



• Cross section exceeding 100 pb for not to heavy Higgs  $m_{H_1}$ .

M. Maniatis

University of Heidelberg

Hypercharge

### Neutral Higgs boson production via gluon fusion





Explicit calculation gives

$$\begin{aligned} \sigma(p(p_1) + p(p_2) \to H_1 + X)|_{GG-\text{fusion}} &= \\ \frac{\pi^2 \ \Gamma(H_1 \to GG)}{8 \ s \ m_{H_1}} \int_0^1 dx_1 N_G^p(x_1) \int_0^1 dx_2 N_G^p(x_2) \delta\left(x_1 x_2 - \frac{m_{H_1}^2}{s}\right) \end{aligned}$$

M. Maniatis

Studies of the THDM

1

### Estimates of experimental detection of Higgs bosons

- At Tevatron we have data of 5 fb<sup>-1</sup>, at LHC we expect 100 fb<sup>-1</sup>/year.
- Assuming a Higgs boson mass h', h", H<sup>±</sup> of 250 GeV we find production cross sections of

 $\sigma_{Tevatron} \approx 2 \text{ pb, that is}$  10,000 events,  $\sigma_{LHC} \approx 1000 \text{ pb, that is } 100,000,000 \text{ events/year}$ 

- Decay proceeds mainly hadronically into c- and s-quarks.
- c-tagging maybe experimentally to difficult?

### Experimental Detection of Higgs bosons

On the other hand we find branching ratios of

$$\begin{split} \frac{\Gamma(h' \to \mu^- \mu^+)}{\Gamma(h' \to \text{all})} &\approx \frac{\Gamma(h'' \to \mu^- \mu^+)}{\Gamma(h'' \to \text{all})} \approx \frac{\Gamma(H^+ \to \mu^+ \nu_\mu)}{\Gamma(H^+ \to \text{all})} \approx \\ \frac{\Gamma(H^- \to \mu^- \bar{\nu}_\mu)}{\Gamma(H^- \to \text{all})} &\approx \frac{m_\tau^2}{3(m_t^2 + m_b^2) + m_\tau^2} \approx 3 \cdot 10^{-5} \; . \end{split}$$

- Number of Higgs-bonsons with subsequent decay into  $\mu$ :
  - At Tevatron less than 1 event.
  - At LHC we expect about 3000 events/year.

M. Maniatis

#### • Renormalization group equations for $\lambda_{1,2,3,4,5,6,7}$

$$\begin{split} 8\pi^2 \frac{d\lambda_1}{dt} &= 6\lambda_1^2 + 2\lambda_3^2 + 2\lambda_3\lambda_4 + \lambda_4^2 + |\lambda_5|^2 + 12|\lambda_6|^2 \\ &-\lambda_1 \left(\frac{3}{2}g_1^2 + \frac{9}{2}g_2^2\right) + \frac{3}{8}g_1^4 + \frac{3}{4}g_1^2g_2^2 + \frac{9}{8}g_2^4, \\ 8\pi^2 \frac{d\lambda_2}{dt} &= 6\lambda_2^2 + 2\lambda_3^2 + 2\lambda_3\lambda_4 + \lambda_4^2 + |\lambda_5|^2 + 12|\lambda_7|^2 \\ &-\lambda_2 \left(\frac{3}{2}g_1^2 + \frac{9}{2}g_2^2\right) + \frac{3}{8}g_1^4 + \frac{3}{4}g_1^2g_2^2 + \frac{9}{8}g_2^4, \\ 8\pi^2 \frac{d\lambda_3}{dt} &= (\lambda_1 + \lambda_2)(3\lambda_3 + \lambda_4) + 2\lambda_3^2 + \lambda_4^2 + |\lambda_5|^2 + 2|\lambda_6|^2 + 2|\lambda_7|^2 + 4\lambda_6\lambda_7^* + 4\lambda_6^*\lambda_7 \\ &-\lambda_3 \left(\frac{3}{2}g_1^2 + \frac{9}{2}g_2^2\right) + \frac{3}{8}g_1^4 - \frac{3}{4}g_1^2g_2^2 + \frac{9}{8}g_2^4, \\ 8\pi^2 \frac{d\lambda_4}{dt} &= (\lambda_1 + \lambda_2)\lambda_4 + 4\lambda_3\lambda_4 + 2\lambda_4^2 + 4|\lambda_5|^2 + 5|\lambda_6|^2 + 5|\lambda_7|^2 + \lambda_6\lambda_7^* + \lambda_6^*\lambda_7 \\ &-\lambda_4 \left(\frac{3}{2}g_1^2 + \frac{9}{2}g_2^2\right) + \frac{3}{2}g_1^2g_2^2, \\ 8\pi^2 \frac{d\lambda_5}{dt} &= \lambda_5 \left(\lambda_1 + \lambda_2 + 4\lambda_3 + 6\lambda_4\right) + 5\lambda_6^2 + 5\lambda_7^2 + 2\lambda_6\lambda_7 \\ &-\lambda_5 \left(\frac{3}{2}g_1^2 + \frac{9}{2}g_2^2\right), \\ 8\pi^2 \frac{d\lambda_6}{dt} &= 6\lambda_1\lambda_6 + 3\lambda_3(\lambda_6 + \lambda_7) + \lambda_4(4\lambda_6 + 2\lambda_7) + \lambda_5(5\lambda_6^* + \lambda_7^*) \end{split}$$

M. Maniatis

University of Heidelberg

$$\begin{split} 8\pi^2 \frac{d\eta_{00}}{dt} &= 4\eta_{00}^2 + \eta_{00}(\eta_{11} + \eta_{22} + \eta_{33}) + \eta_{11}^2 + \eta_{22}^2 + \eta_{33}^2 + 6(\eta_{01}^2 + \eta_{02}^2 + \eta_{03}^2) \\ &\quad + 2(\eta_{12}^2 + \eta_{13}^2 + \eta_{23}^2) - \eta_{00} \left(\frac{3}{2}g_1^2 + \frac{9}{2}g_2^2\right) + \frac{3}{4}g_1^4 + \frac{9}{4}g_2^4, \\ 8\pi^2 \frac{d\eta_{01}}{dt} &= \eta_{01} \left(6\eta_{00} - \frac{3}{2}g_1^2 - \frac{9}{2}g_2^2\right) + 6(\eta_{01}\eta_{11} + \eta_{02}\eta_{12} + \eta_{03}\eta_{13}), \\ 8\pi^2 \frac{d\eta_{02}}{dt} &= \eta_{02} \left(6\eta_{00} - \frac{3}{2}g_1^2 - \frac{9}{2}g_2^2\right) + 6(\eta_{01}\eta_{12} + \eta_{02}\eta_{22} + \eta_{03}\eta_{23}), \\ 8\pi^2 \frac{d\eta_{03}}{dt} &= \eta_{03} \left(6\eta_{00} - \frac{3}{2}g_1^2 - \frac{9}{2}g_2^2\right) + 6(\eta_{01}\eta_{13} + \eta_{02}\eta_{23} + \eta_{03}\eta_{33}), \\ 8\pi^2 \frac{d\eta_{11}}{dt} &= \eta_{11} \left(3\eta_{00} + 3\eta_{11} - \eta_{22} - \eta_{33} - \frac{3}{2}g_1^2 - \frac{9}{2}g_2^2\right) + \frac{3}{2}g_1^2g_2^2 + 6\eta_{01}^2 + 4(\eta_{12}^2 + \eta_{13}^2), \\ 8\pi^2 \frac{d\eta_{23}}{dt} &= \eta_{33} \left(3\eta_{00} - \eta_{11} + 3\eta_{22} - \eta_{33} - \frac{3}{2}g_1^2 - \frac{9}{2}g_2^2\right) + \frac{3}{2}g_1^2g_2^2 + 6\eta_{02}^2 + 4(\eta_{12}^2 + \eta_{23}^2), \\ 8\pi^2 \frac{d\eta_{13}}{dt} &= \eta_{12} \left(3\eta_{00} + 3\eta_{11} - \eta_{22} + 3\eta_{33} - \frac{3}{2}g_1^2 - \frac{9}{2}g_2^2\right) + \frac{3}{2}g_1^2g_2^2 + 6\eta_{03}^2 + 4(\eta_{13}^2 + \eta_{23}^2), \\ 8\pi^2 \frac{d\eta_{13}}{dt} &= \eta_{13} \left(3\eta_{00} + 3\eta_{11} - \eta_{22} + 3\eta_{33} - \frac{3}{2}g_1^2 - \frac{9}{2}g_2^2\right) + \frac{3}{2}g_1^2g_2^2 + 6\eta_{03}^2 + 4(\eta_{13}^2 + \eta_{23}^2), \\ 8\pi^2 \frac{d\eta_{13}}{dt} &= \eta_{13} \left(3\eta_{00} + 3\eta_{11} - \eta_{22} + 3\eta_{33} - \frac{3}{2}g_1^2 - \frac{9}{2}g_2^2\right) + \frac{3}{2}g_1^2g_2^2 + 6\eta_{03}^2 + 4(\eta_{13}^2 + \eta_{23}^2), \\ 8\pi^2 \frac{d\eta_{13}}{dt} &= \eta_{13} \left(3\eta_{00} + 3\eta_{11} - \eta_{22} + 3\eta_{33} - \frac{3}{2}g_1^2 - \frac{9}{2}g_2^2\right) + 6\eta_{01}\eta_{03} + 4\eta_{13}\eta_{23}, \\ 8\pi^2 \frac{d\eta_{13}}{dt} &= \eta_{13} \left(3\eta_{00} - \eta_{11} + 3\eta_{22} + 3\eta_{33} - \frac{3}{2}g_1^2 - \frac{9}{2}g_2^2\right) + 6\eta_{01}\eta_{03} + 4\eta_{12}\eta_{23}, \\ 8\pi^2 \frac{d\eta_{13}}{dt} &= \eta_{23} \left(3\eta_{00} - \eta_{11} + 3\eta_{22} + 3\eta_{33} - \frac{3}{2}g_1^2 - \frac{9}{2}g_2^2\right) + 6\eta_{01}\eta_{03} + 4\eta_{12}\eta_{13}. \\ \end{array}$$

#### M. Maniatis

University of Heidelberg

Hypercharge

Maximmally CP

|        | case  | $\eta_{01}$  | $\eta_{02}$  | $\eta_{03}$  | $\eta_{12}$  | $\eta_{13}$  | $\eta_{23}$  | $\eta_{11}$  | $\eta_{22}$  | $\eta_{33}$  | invariant terms                                                     |
|--------|-------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------------------------------------------------------------|
|        | 1)    | 0            | 0            | $\checkmark$ | $\checkmark$ | 0            | 0            | $\checkmark$ | $\checkmark$ | $\checkmark$ | $K_3, K_1 K_2, K_1^2, K_2^2, K_3^2$                                 |
|        | 2)    | $\checkmark$ | $\eta_{01}$  | 0            | $\checkmark$ | $\checkmark$ | $-\eta_{13}$ | √            | $\eta_{11}$  | $\checkmark$ | $K_1 + K_2, K_1 K_2, (K_1 - K_2) K_3$<br>$K_1^2 + K_2^2, K_3^2$     |
|        | 3)    | $\checkmark$ | $-\eta_{01}$ | 0            | $\checkmark$ | $\checkmark$ | $\eta_{13}$  | $\checkmark$ | $\eta_{11}$  | $\checkmark$ | $K_1 - K_2, K_1 K_2, (K_1 + K_2) K_3, K_3^2, K_1^2 + K_2^2$         |
|        | 4)    | $\checkmark$ | $\eta_{01}$  | $-\eta_{01}$ | $\checkmark$ | $-\eta_{12}$ | $-\eta_{12}$ | ~            | $\eta_{11}$  | $\eta_{11}$  | $K_1 + K_2 - K_3, K_1 K_2 - (K_1 + K_2) K_3, K_1^2 + K_2^2 + K_3^2$ |
|        | 5)    | $\checkmark$ | $\eta_{01}$  | $\eta_{01}$  | $\checkmark$ | $\eta_{12}$  | $\eta_{12}$  | $\checkmark$ | $\eta_{11}$  | $\eta_{11}$  | $K_1 + K_2 + K_3, K_1K_2 + K_1K_3 + K_2K_3, K_1^2 + K_2^2 + K_3^2$  |
|        | 6)    | 0            | 0            | 0            | 0            | 0            | 0            | $\checkmark$ | $\checkmark$ | $\checkmark$ | $K_1^2, K_2^2, K_3^2$                                               |
|        | 7)    | 0            | 0            | 0            | $\checkmark$ | 0            | 0            | $\checkmark$ | $\eta_{11}$  | $\checkmark$ | $K_1 K_2, K_1^2 + K_2^2, K_3^2$                                     |
|        | 8)    | 0            | 0            | 0            | $\checkmark$ | $-\eta_{12}$ | $-\eta_{12}$ | $\checkmark$ | $\eta_{11}$  | $\eta_{11}$  | $K_1 K_2 - (K_1 + K_2) K_3, K_1^2 + K_2^2 + K_3^2$                  |
|        |       |              |              |              |              |              |              |              |              |              | K.K. + K.K. + K.K.                                                  |
| M. Man | iatis |              |              |              |              |              |              |              |              |              | University of Heidelberg                                            |

- Tevatron luminosity 5 fb<sup>-1</sup>, LHC luminosity 100 fb<sup>-1</sup>/year.
- ► Assuming Higgs boson masses h', h", H<sup>±</sup> of 250 GeV

 $\sigma_{\text{T}evatron} \approx 2 \text{ pb}$  (10,000 events),  $\sigma_{\text{LHC}} \approx 1000 \text{ pb}$  (100,000,000 events/year)

- Decay proceeds mainly hadronically into c- and s-quarks.
- c-tagging maybe experimentally to difficult?
- ► Branching ratio  $\frac{\Gamma(H \to \mu^- \mu^+)}{\Gamma(H \to \text{all})} \approx 3 \cdot 10^{-5} \ (H = h', h'', H^{\pm}).$
- At Tevatron less than 1 event, at LHC we expect about 3000 events/year.