Exploring Higgs Triplet Models via Vector Boson Scattering at the LHC

Phys. Rev. D 81, 075026 (2010)

Ken Moats, Stephen Godfrey

Carleton University

Canada's Capital University

PHENO 2010 Symposium

May 11, 2010

Outline

- Introduction
- Higgs Triplet Models
 - The Littlest Higgs Model
 - The Left-Right Symmetric Model
 - The Georgi-Machacek Model
- Vector Boson Scattering
- Results
 - $W^{\pm}W^{\pm}, W^{\pm}Z, W^{+}W^{-}, ZZ$
 - Discovery Potential
- Conclusions

Introduction

- Need Physics beyond the SM (hierarchy, fine-tuning problems)
 - \Rightarrow Extended Higgs sectors
- TeV scale Higgs bosons can be produced at the LHC via vector boson scattering: $pp \rightarrow \Phi jj \rightarrow VV jj$ (V = W[±], Z)

- Φ^{±±} production via W[±]W[±] scattering has been studied
 in Higgs Triplet Models
 G. Azuelos et al., hep-ph/0402037v1 & hep-ph/0503096v1
- Also need to study Φ^{\pm} production (W[±]Z) and Φ^0 production (W⁺W⁻ & ZZ)
- $W^+Z\Phi^-$ interaction not present in 2HDM (i.e. SUSY)
 - : WZ scattering may provide evidence for Higgs triplets

The Littlest Higgs Model

N. Arkani-Hamed et al. (2002) hep-ph/0206021

• Introduce new interactions at scale $\Lambda = 4\pi f \sim 10$ TeV with new particles at $f \sim 1$ TeV: heavy gauge bosons, heavy scalars, new heavy quarks.

• Quadratic divergences in M_H^2 are cancelled by the contributions of these new particles.

$$\delta M_H^2 = \frac{G_F \Lambda^2}{4\sqrt{2}\pi^2} \left(6M_W^2 + 3M_Z^2 + M_H^2 - 12M_t^2 \right) + \dots$$

• Scalar Sector: $h = \begin{pmatrix} h^+ \\ h^0 \end{pmatrix} \qquad \phi = \begin{pmatrix} \phi^{++} & \phi^+ / \sqrt{2} \\ \phi^+ / \sqrt{2} & \phi^0 \end{pmatrix}$ Doublet Triplet

The Littlest Higgs Model

N. Arkani-Hamed et al. (2002) hep-ph/0206021

• Higgs fields acquire vevs, triggering EWSB

$$\langle h^0 \rangle = v/\sqrt{2}$$
 $\langle i\phi^0 \rangle = v'$

$$\begin{split} W^{+}_{\mu}W^{-}_{\nu}\Phi^{0} & -\frac{i}{2}g^{2}(s_{0}\nu - 2\sqrt{2}\nu')g_{\mu\nu} \simeq 0\\ Z_{\mu}Z_{\nu}\Phi^{0} & -\frac{i}{2}\frac{g^{2}}{c_{\nu}^{2}}(s_{0}\nu - 4\sqrt{2}\nu')g_{\mu\nu} \simeq \sqrt{2}i\frac{g^{2}}{c_{\nu}^{2}}\nu'g_{\mu\nu}\\ W^{+}_{\mu}Z_{\nu}\Phi^{-} & -i\frac{g^{2}}{c_{w}}\nu'g_{\mu\nu}\\ W^{+}_{\mu}h\Phi^{-} & -i\frac{g}{2}(\sqrt{2}s_{0} - s_{+})(p_{1} - p_{2})_{\mu} \simeq -ig\frac{\nu'}{\nu}(p_{1} - p_{2})_{\mu}\\ W^{+}_{\mu}W^{+}_{\nu}\Phi^{--} & 2ig^{2}\nu'g_{\mu\nu} \end{split}$$

- Couplings to vector bosons $\sim v'$
- EW data indicate: $1 \text{ GeV} \leq v' \leq 4 \text{ GeV}$ for f = 2 TeV

M.-C. Chen and S. Dawson (2004) hep-ph/0311032v3

The Left-Right Symmetric Model
R.N. Mohapatra and J.C. Pati, Phys. Rev. D 11, 566 (1975)

$$\Delta_{L} = \begin{pmatrix} \delta_{L}^{+}/\sqrt{2} & \delta_{L}^{++} \\ \delta_{L}^{0} & -\delta_{L}^{+}/\sqrt{2} \end{pmatrix}$$

$$\Delta_{R} = \begin{pmatrix} \delta_{R}^{+}/\sqrt{2} & \delta_{R}^{++} \\ \delta_{R}^{0} & -\delta_{R}^{+}/\sqrt{2} \end{pmatrix}$$

$$\langle \Delta_{L,R} \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 \\ v_{L,R} & 0 \end{pmatrix}$$

- Triplet vevs break $SU(2)_L \times SU(2)_R \times U(1)_{B-L} \rightarrow SU(2)_L \times U(1)_Y$
- $\Delta_{\rm R}$ couples to W_R, Z_R (heavy gauge bosons) with couplings ~ v_R
- $\Delta_{\rm L}$ couples to W_L, Z_L (SM gauge bosons) with couplings ~ v_L

 $\rho = 1.0004^{+0.0027}_{-0.0007}$ at 2σ C. Amsler et al. (PDG), Phys. Lett. B 667, 1 (2008)

Constraints on ρ parameter $\Rightarrow v' \equiv v_L/\sqrt{2} \lesssim 2 \text{ GeV}$

The Georgi-Machacek Model

H. Georgi and M. Machacek, Nucl. Phys. B 262, 463 (1985)

• Introduce scalar triplets:

$$\chi = \left(egin{array}{cccc} \chi^0 & \xi^+ & \chi^{++} \ \chi^{-} & \xi^0 & \chi^+ \ \chi^{--} & \xi^- & \chi^{0^*} \end{array}
ight)$$

$$\langle \chi^0
angle = \langle \xi^0
angle = oldsymbol{v}'$$

 $s_H^2 \equiv \frac{8{v'}^2}{{\cdots}^2}$

- Triplet mass eigenstates:
 - (H_3^+, H_3^0, H_3^-) couples to fermions
 - $(H_5^{\pm\pm}, H_5^{\pm}, H_5^{0})$ couples to vector bosons with couplings $\sim s_H \sim v'$

• $\tan \theta_H \equiv s_H / c_H \lesssim 0.5, 1, 1.7$ for $M_{H3} = 0.1, 0.5, 1$ TeV (95% C.L. from Zbb) H. Haber and H. Logan, Phys. Rev. D 62, 015011 (2000)

In our calculations, we use $\tan \theta_H = 0.5 \implies v' = 39 \text{ GeV}$

Vector Boson Scattering

$$pp \rightarrow V V jj \quad (V = W^{\pm}, Z)$$

Consider "gold-plated" leptonic decay modes (smaller branching ratio, but lower QCD backgrounds than hadronic or semileptonic decays)

Decay mode
$$(\ell = e, \mu)$$
 B.R.
 $W^{\pm}W^{\pm} \rightarrow \ell^{\pm}\nu \ell^{\pm}\nu$ 0.047
 $W^{\pm}Z \rightarrow \ell^{\pm}\nu \ell^{+}\ell^{-}$ 0.015
 $W^{+}W^{-} \rightarrow \ell^{+}\nu \ell^{-}\nu$ 0.047
 $Z Z \rightarrow \ell^{+}\ell^{-}\ell^{+}\ell^{-}$ 0.0045
 $Z Z \rightarrow \ell^{+}\ell^{-}\nu\overline{\nu}$ 0.019

Signal Characteristics:

- 2 energetic forward jets
- Low jet activity in central region
- Leptons at low rapidity

• $\sigma_{\rm sig} \sim v'^2$

Vector Boson Scattering

Backgrounds V. Barger et al. (1990) & J. Bagger et al. (1994, 1995) • Irreducible EW background: $q_1 q_2 \rightarrow q'_1 q'_2 VV$ at $O(\alpha^4)$

- $\sigma_{signal}(pp \to V_L V_L jj) \equiv \sigma_{total}(pp \to V V jj) \sigma_{SM}(pp \to V V jj)$
- QCD background: $q_1q_2 \rightarrow VV + QCD \ jets$ up to $O(\alpha^2 \alpha_s^2)$
- Top quark backgrounds $(t \rightarrow Wb)$:

 $W^{\pm} t\bar{t}$ for W[±]W[±] final state

 $Z t \bar{t} + j e t$ for W[±]Z final state

 $t\bar{t} + jet$ for W⁺W⁻ final state

• Include $q_1 q_2 \rightarrow q'_1 q'_2 W^{\pm} Z \rightarrow \ell^{\pm} \ell^{\pm} + X$ as background to $W^{\pm} W^{\pm}$ channel

• MADGRAPH was used to simulate the signals and backgrounds $(\sqrt{s} = 14 \ TeV)$

$\Phi^{\pm\pm}$ Production: $W^{\pm}W^{\pm} \rightarrow \ell^{\pm}\nu \ell^{\pm}\nu$ SM Backgrounds: Cuts: $3.0 < |y(j_{tag})| < 5.0$ • EW Background: $p_T(j_{tag}) > 40 \text{ GeV}$ $pp \to W^{\pm}W^{\pm}jj, \ \mathcal{O}(\alpha^4)$ $E(j_{tag}) > 500 \text{ GeV}$ |y(l)| < 2.5 $|y(j_{veto})| < 3.0$ $p_T(l_1) > 200 \text{ GeV}$ • QCD Background: $p_T(j_{veto}) > 100 \text{ GeV}$ $p_T(l_2) > 50 \,\,\mathrm{GeV}$ $pp \to W^{\pm}W^{\pm}jj, \mathcal{O}(\alpha^2 \alpha_s^2)$ $\Delta p_T(ll) = |p_T(l_1) - p_T(l_2)| > 300 \text{ GeV}$ $\Delta y(ll) = |y(l_1) - y(l_2)| < 3$ • Top Quark Background: $M_T(WW) > 550 \ (800) \ \text{GeV}$ for $M_{\Phi} = 1.0$ (1.5) TeV $pp \rightarrow W^{\pm} t \overline{t},$ $pp \rightarrow W^{\pm} t \bar{t} j,$ WW Cluster Transverse Mass: with $t \to Wb$. $M_T^2(WW) = \sqrt{M^2(ll) + p_T^2(ll)} + |\mathbf{p}_T|$ • $W^{\pm}Z$ Background: $-\left[\mathbf{p}_{T}(ll)+\mathbf{p}_{T}\right]^{2}$ $pp \rightarrow W^{\pm}Z + nj$

SM Backgrounds: Cuts: $3.0 < |y(j_{tag})| < 5.0$ • EW Background: |y(l)| < 2.5 $p_T(j_{tag}) > 40 \text{ GeV}$ $p_T(l_1) > 150 \text{ GeV}$ $pp \to W^{\pm}Zjj, \mathcal{O}(\alpha^4)$ $E(j_{tag}) > 500 \text{ GeV}$ $p_T(l_2) > 50 \text{ GeV}$ $|y(j_{veto})| < 3.0$ $p_T(l_3) > 50 \text{ GeV}$ $p_T(j_{veto}) > 100 \text{ GeV}$ • QCD Background: $p_T > 50 \text{ GeV}$ $pp \rightarrow W^{\pm}Zj, \mathcal{O}(\alpha^2 \alpha_s)$ $M_T(WZ) > 900 \ (1250) \ \text{GeV}$ $pp \rightarrow W^{\pm}Zjj, \mathcal{O}(\alpha^2 \alpha_s^2)$ for $M_{\Phi} = 1.0 \ (1.5) \text{ TeV}$ • Top Quark Background: $pp \rightarrow Zt\bar{t},$ WZ Cluster Transverse Mass: $pp \rightarrow Z t \overline{t} j,$ $M_T^2(WZ) = \left[\sqrt{M^2(lll) + p_T^2(lll)} + |\mathbf{p}_T|\right]^2$ with $t \to Wb$. $-\left[\mathbf{p}_{T}(lll)+\mathbf{p}_{T}\right]^{2}$

 Φ^0 Production: $ZZ \rightarrow \ell^+ \ell^- \ell^+ \ell^-$

No t-quark backgrounds

Jet veto not used, as this further reduces the already small number of signal events

Can reconstruct ZZ invariant mass

Discovery Potential

Integrated luminosity required for at least 10 signal events and $S/\sqrt{B} \ge 5$

	Littlest Higgs		Georgi-Machacek		Left-right symmetric	
	$M_{\Phi} = 1.0 \text{ TeV}$	$M_{\Phi} = 1.5 \text{ TeV}$	$M_{\Phi} = 1.0 \text{ TeV}$	$M_{\Phi} = 1.5 \text{ TeV}$	$M_{\Phi} = 1.0 \text{ TeV}$	$M_{\Phi} = 1.5 \text{ TeV}$
Channel	(fb^{-1})	(fb^{-1})	(fb^{-1})	(fb^{-1})	(fb^{-1})	(fb^{-1})
$W^{\pm}W^{\pm}$	41	118	41	119	41	117
$W^{\pm}Z$	3300	4350	171	474	591	877
W^+W^-	• • •	• • •	22 300	25 200	1840	2980
ZZ	2230	5780	1520	4290	543	1720

- Unlikely to observe triplet during early years of LHC running (~ 10 fb⁻¹ / year)
- Doubly charged (and possibly singly charged) Higgs in GM model may be observed once design luminosity (~ 100 fb⁻¹/ year) is achieved
- Note: These results assume v' = 39 GeV, and $\sigma_{sig} \sim v'^2$
- Discovery in LH model (assuming v' = 4 GeV) and in L-R model (assuming v' = 2 GeV) would require several ab^{-1}

Conclusions

- Cross sections for Higgs triplet production depend quadratically on v'
- Discovery in the Georgi-Machacek model is more promising than in the Littlest Higgs or L-R Symmetric models (due to larger upper bound on v')
- W[±]W[±] channel is most promising for discovery at the LHC
- W[±]Z scattering signal may be discovered for certain regions of parameter space
 ⇒ smoking gun for Higgs triplet
- Ratio of rates in W[±]W[±] & W[±]Z channel allows to distinguish models
- Discovery not very promising for W^+W^- final state (large QCD & t-quark backgrounds) or for $ZZ \rightarrow 4$ leptons (small signal cross section)
- $ZZ \rightarrow \ell^+ \ell^- \nu \overline{\nu}$ mode may improve Φ^0 discovery potential
- Semi-leptonic decay modes may improve discovery potential
- High luminosity is required for some channels/models. Need to wait for SLHC.