Experimental Prospect on the Favour Physics in the LHC Era

2010 Phenomenology Symposium Madison, US, 10 -12 May 2010

Tatsuya NAKADA

Laboratory for High Energy Physics (LPHE) Swiss Federal Institute of Technology Lausanne (EPFL) Lausanne, Switzerland

- Theory
 - Introduction of "strangeness" quantum number Gelmann, Nishijima, and others (1955)
 - Flavour mixing
 - Cabibbo (1963)
 - GIM mechanism
 - Glashow, Iliopoulos, and Maiani (1970)

- Experiment
 - Discovery of strange particles, their decay properties

- Theory
 - Introduction of "strangeness" quantum number Gelmann, Nishijima, and others (1955)
 - Flavour mixing Cabibbo (1963)
 - GIM mechanism
 - Glashow, Iliopoulos, and Maiani (1970)
 - Three family flavours and CP violation

Kobayashi and Maskawa (1973)

- Experiment
 - Discovery of strange particles, their decay properties
 - Discovery of CP violation in the kaon system (1964)

- Theory
 - Introduction of "strangeness" quantum number Gelmann, Nishijima, and others (1955)
 - Flavour mixing Cabibbo (1963)
 - GIM mechanism
 - Glashow, Iliopoulos, and Maiani (1970)
 - Three family flavours and CP violation Kobayashi and Maskawa (1973)
 - **-**???
- Experiment
 - Discovery of strange particles, their decay properties
 ⇒ discovery of c, b and t and studies of their decays
 - Discovery of CP violation in the kaon system (1964)
 - \Rightarrow further investigations in the K, D and B systems

Also some less spectacular surprises

 long b-quark lifetime → |V_{cb}|<|V_{us}|
 by MAC and Mark-II experiments (1983)

Also some less spectacular surprises

 long b-quark lifetime → |V_{cb}|<|V_{us}|
 by MAC and Mark-II experiments (1983)

• Unfortunately, no surprise from CPV in B so far...

• Many precise experimental tests on the decays of u, c, s, and b hadrons and K- \overline{K} and B- \overline{B} oscillations

Plus some other diagrams but less relevant for "flavour" physics

- Many precise experimental tests on the decays of u, c, s, and b hadrons and K- \overline{K} and B- \overline{B} oscillations
- CP violation in K and B systems

- Many precise experimental tests on the decays of u, c, s, and b hadrons and K- \overline{K} and B- \overline{B} oscillations
- CP violation in K and B systems

- Many precise experimental tests on the decays of u, c, s, and b hadrons and K- \overline{K} and B- \overline{B} oscillations
- CP violation in K and B systems

- Many precise experimental tests on the decays of u, c, s, and b hadrons and K- \overline{K} and B- \overline{B} oscillations
- CP violation in K and B systems For the kaon system i) Oscillations: $\operatorname{Re}\eta_{+-}$, $\operatorname{Re}\eta_{00}$ ($\operatorname{Re}\varepsilon$) $\neq 0$ ii) Interplay decay-oscillations: $\text{Im}\eta_{+-}$, $\text{Im}\eta_{00} \neq 0$ iii) Decay amplitudes: $|\eta_{+-}| - |\eta_{00}| \neq 0$ have been well experimentally established measured with $\sim 5\%$ accuracy for i) and ii) $\sim 16\%$ for iii)

- Many precise experimental tests on the decays of u, c, s, and b hadrons and K- \overline{K} and B- \overline{B} oscillations
- CP violation in K and B systems For the kaon system i) Oscillations: $\operatorname{Re}\eta_{+-}$, $\operatorname{Re}\eta_{00}$ ($\operatorname{Re}\varepsilon$) $\neq 0$ ii) Interplay decay-oscillations: $\text{Im}\eta_{+-}$, $\text{Im}\eta_{00} \neq 0$ iii) Decay amplitudes: $|\eta_{+}| - |\eta_{00}| \neq 0$ have been well experimentally established measured with $\sim 5\%$ accuracy for i) and ii) $\sim 16\%$ for iii)

Results not fully exploited ← hadronic uncertainties

- Many precise experimental tests on the decays of u, c, s, and b hadrons and K- \overline{K} and B- \overline{B} oscillations
- CP violation in K and B systems For the kaon system i) Oscillations: $\operatorname{Re}\eta_{+-}$, $\operatorname{Re}\eta_{00}$ ($\operatorname{Re}\varepsilon$) $\neq 0$ ii) Interplay decay-oscillations: $\text{Im}\eta_{+-}$, $\text{Im}\eta_{00} \neq 0$ iii) Decay amplitudes: $|\eta_{+-}| - |\eta_{00}| \neq 0$ have been well experimentally established measured with $\sim 5\%$ accuracy for i) and ii) $\sim 16\%$ for iii)

Future: $K \rightarrow \pi v \overline{v}$ at CERN(K⁺) and JPARC(K_L)

- B-factories
 - PEP-II closed down
 - KEKB completed the $\Upsilon(4S)$ run BBABR 433 fb⁻¹ $\Upsilon(4S) = \sim 500$ M BB Belle: 720 fb⁻¹ $\Upsilon(4S) = \sim 800$ M BB

- B-factories
 - PEP-II closed down
 - KEKB completed the $\Upsilon(4S)$ run BBABR 433 fb⁻¹ $\Upsilon(4S) = \sim 500$ M BB Belle: 720 fb⁻¹ $\Upsilon(4S) = \sim 800$ M BB
- Tevatron
 - CDF and D0 taking data
 - ~7 fb⁻¹/experiment collected
 - ~10 fb⁻¹/experiment by the end of data taking

- Many precise experimental tests on the decays of u, c, s, and b hadrons and K- \overline{K} and B- \overline{B} oscillations
- CP violation in K and B systems
- In the Standard Model, the nine $V_{\rm UD}$ are described by four independent parameters: e.g. (λ, A, ρ, η)

- Many precise experimental tests on the decays of u, c, s, and b hadrons and K- \overline{K} and B- \overline{B} oscillations
- CP violation in K and B systems
- In the Standard Model, the nine $V_{\rm UD}$ are described by four independent parameters: e.g. (λ, A, ρ, η)

A closer look...

• If there were Physics beyond the Standard model,

A closer look...

• If there were Physics beyond the Standard model,

For example...

 (ρ, η) determination with loop diagrams B-B oscillation frequency and CPV(B→J/ψK_S, ε_K) versus
 (ρ, η) determination with tree diagrams CPV(B→DK) and Γ(b→ulv)

For example...

 (ρ, η) determination with loop diagrams B-B oscillation frequency and CPV(B→J/ψK_S, ε_K) versus
 (ρ, η) determination with tree diagrams CPV(B→DK) and Γ(b→ulv)

Better low energy QCD theory for $B_B f_B^2$, B_K , ... and More statistics for CPV(B \rightarrow DK) γ determination \Rightarrow LHCb experiments

T. Nakada

• CPV in $B \rightarrow J/\psi K_S$ (tree) vs $\rightarrow \phi K_S$ (penguin)

in 2006

2010 Phynomenology Pymposium, Madison, 10-12.05.2010

• CPV in $B \rightarrow J/\psi K_S$ (tree) vs $\rightarrow \phi K_S$ (penguin)

in 2006

In 2009 BABAR: full statistics Belle: ~70% statistics

• CPV in $B \rightarrow J/\psi K_S$ (tree) vs $\rightarrow \phi K_S$ (penguin)

Statistically, no difference... $\phi K_{s} = 0.44^{+0.17}_{-0.18}$ $\eta' K_s = 0.59 \pm 0.07$ Average: 0.57±0.07 $J/\psi K_{s} = 0.67 \pm 0.02$ ло Ко This is only 1.37σ effect... Even with B factories full statistics ωK_s we need 0.3 difference for 5σ discovery

b→s penguin phase = standard model phase

• An alternative channel for LHCb

 $B_s \rightarrow \phi \phi$ (LHCb is not too good at $B_d \rightarrow \phi K_S$)

Yield (2 fb⁻¹): 4600 events, B/S <2.4 With 10 fb⁻¹ data: $\sigma(S_{B_s \rightarrow \phi \phi}) = 0.06$ cf. $\sigma(S_{B_d \rightarrow \phi K_S}) = 0.17$

 $\sigma(S_{B_d \rightarrow \eta' K_S}) = 0.06$ with B factory full statistics

Comparing with the SM prediction, the current errors are too large to conclude anytting. CDF&D0 experimental errors will be reduced to a half.

- Experimentally established effects, i.e. >5 σ effect, which is not well understood: A_{CP} difference between B⁺ and B⁰ \rightarrow K π
- LHCb will have high statistics samples for K ρ or B_s equivalent.
 - \Rightarrow Will theory be able to digest, i.e. hadronic effect?

• What remarkable is that ε_K agrees with the measurements from the B system

$$\begin{aligned} & \epsilon_{\rm K}: \qquad {\rm s} \rightarrow t \rightarrow {\rm d}, \\ & \beta_{(\rm cc)(\rm sd)CP}: {\rm b} \rightarrow t \rightarrow {\rm d} \\ & \beta_{(\rm ss)(\rm sd)CP}: {\rm b} \rightarrow t \rightarrow {\rm s} \\ & {\rm and} \end{aligned}$$

 $\begin{array}{ccc} \gamma : & b \longrightarrow u \\ & \downarrow \end{array}$

No real hit of new physics in the phases so far

⇒ May be new physics phases are very close to the Standard Model phase...

Back to a closer look...

• If there were Physics beyond the Standard model,

• $B \rightarrow K^* \mu^+ \mu^-$ angular distribution of the decay products: proving the Lorentz structure in $b \rightarrow s$

Babar(75% of data) and Belle(80% of data)

Babar(75% of data) and Belle(80% of data)

Along the same line...

• Time dependent CP violation in $B \rightarrow f_{CP}\gamma$ only through "wrongly" polarised photon: probing the Lorentz structure in $b \rightarrow s$ $B_d \rightarrow K^{*0}(K_s \pi^0)\gamma$ at B factories, $B_s \rightarrow \phi\gamma$ for LHCb

$$A_{\rm CP}(t) = \frac{C \cos \Delta m t + S \sin \Delta m t}{A^{\Delta} \sinh \Delta \Gamma t/2 - \cosh \Delta \Gamma t/2}$$

$$S = \sin 2\psi \sin \phi \qquad \psi = \tan^{-1} \frac{|A(b \rightarrow s\gamma_R)|}{|A(b \rightarrow s\gamma_L)|}$$

For $B_d \Delta \Gamma = 0$, $\sin \phi = S_{J/\psi KS} = 0.67$ with absence of new phase For $B_s \Delta \Gamma \neq 0$, $\sin \phi = S_{J/\psi \phi} = 0.04$ with absence of new phase

Photon polarisation from CP violation

• Belle

 $\sigma(S) = {}^{+0.63}_{-0.50}$ with 253 fb⁻¹ $\rightarrow \pm 0.3$ with full statistics

• BABAR

 $\sigma(S)=\pm 0.3$ with almost full statistics

 $\sigma(\sin 2\psi) = 0.3$

Photon polarisation from CP violation

• Belle

 $\sigma(S) = {}^{+0.63}_{-0.50}$ with 253 fb⁻¹ $\rightarrow \pm 0.3$ with full statistics

• BABAR

 $\sigma(S)=\pm 0.3$ with almost full statistics

 $\sigma(\sin 2\psi) = 0.3$

• LHCb

 $\sigma(A^{\Delta})=0.22$ and $\sigma(S)=0.11$ with 2 fb⁻¹

 $\sigma (\sin 2\psi) = 0.1 \text{ with } 10 \text{ fb}^{-1}$ i.e. fraction of wrongly polarised photon with ~5% error Also B_d $\rightarrow K^{*0}e^+e^-$ ($m_e \approx 0$) 2010 Phynomenology Pymposium, Madison, 10-12.05.2010 T. Nakada

42

Another possibility...

• If there were Physics beyond the Standard model,

Charm physics

- Evidence of D-D oscillations have been seen by BABAR, Belle and CDF
 Compatible with the SM expectation but large hadronic uncertainties
- The next step is toward CP violation

LHCb D physics statistical error with 10 fb⁻¹ data $\sigma(x^{2})=6.4\times10^{-5}$ $\sigma(y^{2})=8.7\times10^{-4}$ $\sigma(y_{CP})=5\times10^{-3}$ CP asymmetries for K⁺K⁻ and $\pi^{+}\pi^{-}$ <O(10⁻³)

Coming several years

- 2010 data; hopefully ~100 pb⁻¹ overtake Tevatron for $B_s \rightarrow J/\psi \phi$ and $\mu^+\mu^-$ studies overtake B factories for $B_d \rightarrow K^{*0}\mu^+\mu^-$
- 2011 ~1 fb^{-1} data

 $S_{J/\psi\phi}$ and $Br(B_s \rightarrow \mu^+ \mu^-)$ to the level of the SM, excluding the large New Physics effects which are still possible now

• 2014 >2 fb⁻¹ data

Start of comprehensive studies, γ , D, $\phi\gamma$, K^{*0} $\mu^+\mu^-$ full angular analysis, etc.

• $\sim 2016 \sim 10 \text{ fb}^{-1} \text{ data}$

Phase I of LHCb competed, move to SLHCb, SB-factory, or something else?

Leptons 1897 Discovery of e 1930 Postulation of v1936 Discovery of μ 1956 Discovery of v1957 Postulation of $v-\overline{v}$ oscillations (P) 1962 Discovery of v_{μ} 1962 Postulation of $v_{\rm e}$ - v_{μ} mixing (NMS) 1975 Discovery of τ 2000 Discovery of v_{τ} Now ν mixing well established

A quick history of flavour physics Hadrons 1932 Discovery of n 1947 Discovery of K 1956 Discovery of $K^0-\overline{K}^0$ oscillations ~1960 "quark" model 1963 Cabibbo mixing 1964 Discovery of CP violation 1970 GIM mechanism (c) 1973 Postulation of 3rd family (KM) 1974 Discovery of c 1977 Discovery of b 1995 Discovery of t Now CKM picture well established

How are they related? Where do we find the next surprise?

Conclusions

• Flavour physics was instrumental for establishing the Standard Model. Many clear indirect indications before the direct discovery by the energy frontier experiments.

Conclusions

- Flavour physics was instrumental for establishing the Standard Model. Many clear indirect indications before the direct discovery by the energy frontier experiments.
- We all hope that within the coming five years to see clear signs for Physics Beyond the Standard Model, both directly and indirectly...

We see B's at LHC

