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The Twist Expansion:

d2σ

dΩdE′ =
α2

q4

E′

E
LµνWµν

T{Jµ(x)Jν(x)} ∼ Γµν

∑

n,k

xµ1 . . . xµnC(n)
k (x2)O(n)

k,µ1...µn
(0)
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The moment of a structure function is a x-Bjorken weighted integral:

The moment can be computed using the momentum-space OPE:
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The Cornwall-Norton Moment:

M (n)
1 (Q2) =

∫ 1

0
dxB xn−2

B F2(xB , Q2)

Mn(Q2, g, µ) =
∫ 1

0
dxB xn−2

B F2(Q2, g, µ) ≈
∑

k

(
1

Q2

) τ−2
2

c̃n
k (g, µ) A(n)

k
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Leading Moment data for F2: (Liang et al. JLAB Hall B - CLAS Collaboration)

τ =
q2

4M2
p

FEL
1 = G2

Mδ(x− 1)

FEL
L = G2

Eδ(x− 1)

FEL
2 =

(G2
E + τG2

M )δ(x− 1)
1 + τ

Puzzle:  Where are the power corrections in the moment?
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Cancellation of Higher Twist? (Liang et al. JLAB Hall C - CLAS Collaboration)

Mn(Q2) = ηn(Q2) + a(4)
n

[
αs(Q2)
αs(µ2)

]γ(4)
n µ2

Q2
+ a(6)

n

[
αs(Q2)
αs(µ2)

]γ(6)
n µ4

Q4
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• At twist-4,  a “canonical” basis of operators has been proposed by Jaffe & 
Soldate:

• Twist-4 Operators must satisfy three conditions:
a)  Totally Symmetric
b)  Traceless
c)  Contain no contracted derivatives

• The first two conditions project out the highest spin portion of the operator.

• The last condition ensures the basis is not over-complete.  These operators can be 
eliminated via QCD equations of motion.
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Twist-4 Operator Basis (R.L. Jaffe & M. Soldate - Phys. Rev. D V26 No.1)
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• 14 Operators appear at twist-4, which can be divided into two groups:  6 four-
quark operators, 8 two-quark operators, and pure-gluonic operators:

• Operators of the following form appear at twist-4:

• Notation:
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The Operator Basis:

! · Q1(k,l)
n = g[ψ̄R!

←−
d l−→d kψR][ψ̄R!

−→
d n−2−k−lψR]

! · Q8(k)
n = iψ̄

←−
d kf

−→
d n−1−kψ

! ·O n ≡ !µ1 . . .!µnOn,µ1...µn ; !2 = 0
d ≡ " · D

fβ ≡ F ρβ"ρ

! · G(k,l)
n = Tr[fα

−→
d n−k−lfα−→d kfβ

−→
d lfβ ]
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The Complete Set of Operators:
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• In order to RG evolve the moments of the structure functions, we must 
compute the one-loop corrections to each operator
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The Anomalous Dimension For Twist 4:
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Using background Field 
method
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Preliminary Results:
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• DGLAP evolution equations can be incorporated by leading twist, but there is 
no DGLAP analog for higher twist, we expect power corrections to scaling at 
lower Q^2.

• At twist-4, these scaling violations include involved mixings among many 
operators.

• We hope to extend this analysis to arbitrary spin, employing a technique 
called non-local operator renormalization.
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Concluding Remarks:
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Thanks!
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Kinematics of Deep Inelastic Scattering:

Picture of Deep Inelastic Scattering:

• Rutherford-like experiment used to probe the structure of the target hadron:

II. LEPTON–NUCLEON SCATTERING: KINEMATICS AND CROSS SECTIONS

In this section we present the kinematics relevant for inclusive lepton–nucleon scattering,
and introduce notations and definitions for cross sections, structure functions, and their
moments, both for unpolarized and polarized scattering. These can be found in standard
texts [8,9], but the most relevant formulas are provided here for completeness.

A. Kinematics

The process which we focus on mainly in this report is inclusive scattering of an electron
(the case of muon or neutrino scattering is similar) from a nucleon (or another hadronic or
nuclear) target, eN → e′X, where X represents the inclusive hadronic final state. In the
target rest frame, the incident electron with energy E scatters from the target through an
angle θ, with a recoil energy E ′. In the one-photon (or Born) approximation, as illustrated
in Fig. 2, the scattering takes place via the exchange of a virtual photon (or W± or Z boson
in neutrino scattering) with energy

ν = E − E ′ , (1)

and momentum #q.

e (k’)e (k)

N (p)

(q)

X

!"

FIG. 2. Inclusive lepton–nucleon scattering in the one-photon exchange approximation. The
four-momenta of the particles are given in parentheses.

Throughout we use natural units, h̄ = c = 1, so that momenta and masses are expressed
in units of GeV (rather than GeV/c or GeV/c2). The virtuality of the photon is then given
by q2 = ν2 − #q 2. Since the photon is spacelike, it is often more convenient to work with the
positive quantity Q2 ≡ −q2, which is related to the electron energies and scattering angle
by
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4

4Monday, April 27, 2009

ν = E − E′

Q2 ≡ −q2

d2σ

dΩdE′ =
4πα2

MQ4

{
W2(Q2, ν)cos2

θ

2
+ 2W1(Q2, ν)sin2 θ

2

}

Q2 →∞ ν →∞ }xB =
Q2

2Mν

, 2MW1(Q2, ν)→ F1(xB , Q2)
νW2(Q2, ν)→ F2(xB , Q2)

F2(x) = 2xF1(x) = x
∑

q

e2
q(q(x) + q̄(x))
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DIS corresponds to the kinematic limit:                                fixed.

In this limit, the forward Compton amplitude

Receives its greatest contributions from the light-cone, where:
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Physics on the Light Cone:

ν, Q2 →∞, xB =
Q2

2P · q

Tµν = i

∫
d4xeiq·x < p|T (Jµ(x)Jν(0))|p >

x2 ∼ 0
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In general, time ordered products of operators at the same space-time point, 
contain singularities:

 

Wilson hypothesized that this product can be expanded in a basis of operators:

It is useful to systematically organize these operators based on their scaling 
behavior
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Introduction to the OPE:

< 0|T (φ(x)φ(0))|0 >= − 1
4π

δ(x2) +
m

8π
√

x2
θ(x2)

[
J1(m

√
x2)− iN1(m

√
x2)

]

T{Jµ(x)Jν(x)} ∼ ΓµνΣn,kxµ1 . . . xµnC(n)
k (x2)O(n)

k,µ1...µn
(0)
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The scaling of operators is controlled by their twist.

Fourier transforming the OPE:
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Twist Expansion

T{Jµ(x)Jν(x)} ∼ ΓµνΣn,kxµ1 . . . xµnC(n)
k (x2)O(n)

k,µ1...µn
(0)

C̃(n)
k (Q2, g, µ) = Q2n

(
∂

∂q2

)n ∫
d4x

(2π)4
eiq·xC(n)

k (x2, g, µ) < p|O(n)
k,µ1...µn

(0)|p >∼ A(n)
k pµ1 . . . pµn − traces

Tµν(Q2, ν) = Γµν

∑

k,n

(2i)n

(
1

xB

)n (
1

Q2

) τ−2
2

c̃(n)
k A(n)

k
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To do this, we compare the mass dimension on both sides of the OPE:

Solving for the dimension of the coefficient function:

We define the “twist” of an operator as:  
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“Twist” of an Operator:

LHS→
(

1
x2

) 1
2 (2dJ )

RHS→
(

1
x2

) 1
2 (−n+dC+dO)

T{Jµ(x)Jν(x)} ∼ ΓµνΣn,kxµ1 . . . xµnC(n)
k (x2)O(n)

k,µ1...µn
(0)

[C] =
(

1
x2

) 1
2 (2dJ−τ)

τ = dO − n
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Using Lorentz invariance and gauge invariance, one can write down a general 
expression for the hadronic tensor in DIS:

This expression of the hadronic tensor allows us to relate the forward 
Compton amplitude to the structure functions W1 and W2.
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Momentum Sum Rule:

Wµν = W1(ν, Q2)
(

qµqν

q2
− gµν

)
+

W2(ν, Q2)
M2

(
pµ − p · q

q2
qµ

) (
pν − p · q

q2
qν

)
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Operator Scaling:

(
µ

∂

∂µ
+ β

∂

∂g

)
C(n)

ij =
∑

k

γ(n)
jk C(n)

ik

γ(n)
jk = µ

∂

∂µ
lnZ(n)

jk

Mn(Q2) ≈
∑

i

(
1

Q2

) τ−2
2

c̃n
j (Q2, g(t), µ)exp

[
−

∫ t

0
γ(n)

ij (ḡ(t′))dt′
]

An
i

To determine the behavior of the moments at various values of Q^2, one must solve 
a Callan-Symanzik equation for the coefficient functions:
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Summary Of Goals:

Extend our understanding of QCD scaling violations past twist-2 to twist-4, which 
incorporates power corrections to scaling.

Develop a correct theoretical understanding of Higher Twist contributions to the 
leading moments of the structure functions.  

A proper understanding of HT effects can also inform electroweak observables.  
Nuclear effects must be understood before claims of new physics can be made for 
NuTeV, as well as future JLAB semi-leptonic experiments.   
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