

Higgs Boson Search Sensitivity in the $H \rightarrow W^+W^-$ Decay Mode at $\sqrt{s} = 7$ and 10 TeV

Gabe Shaughnessy

Pheno 2010 - LHC Decade!

work in collaboration with: Ed Berger, Qing-Hong Cao, Chris Jackson and Tao Liu arXiv:1003.3875

Argonne National Laboratory Northwestern University

May 11, 2010

Pheno 2010

Introduction

- One of the primary goals of the LHC is to probe the mechanism for Electroweak Symmetry Breaking (EWSB)
 - What gives the W and Z bosons mass?
 - In the SM, it is the Higgs boson

• New LHC plan is to run at 7 TeV to accumulate roughly 1 fb-1 of data

Pheno 2010

- In this scenario:
 - Can the LHC be expected to probe the EWSB sector of the SM?
 - What might the Tevatron say after 10 fb⁻¹ of accumulated data?
- We focus on $H \to W^+W^-$ channel alone

Barger, Han, Bhattacharya, Kniehl ('91)

• Decreased E_{cm} probes different region of Bjorken-x

 Gluon-induced channels more suppressed than valence-quark induced channels

Scaling of cross sections

	ATLAS and CMS cuts							
		ATLAS Technical Design arXiv:0901.0512.	Report	CMS Technical Design Report Volume II				
	X	ATLAS		CMS				
	BKGDs	$t\bar{t}$ WW $W+jets$ Single t $Z \rightarrow W$		$ \begin{array}{c} qq/gg \rightarrow WW \rightarrow ll \\ t\overline{t} \rightarrow WWbb \rightarrow ll \\ tWb \rightarrow WWb(b) \rightarrow ll \\ ZW \rightarrow lll \\ ZW \rightarrow lll \end{array} $				
	Preselection		te charge $\eta < 2.5$ < 1.52)	Two tagged leptons with opposite charge with $p_T > 20$ GeV and $ \eta < 2$				
	Physics Cuts	$12 \text{GeV} < m_{ll} < 300 \text{GeV}$ $\not\!$	GeV $_{\rm Z} < 25 { m GeV}$ ad $ \eta < 4.8,$ 5 GeV 600 GeV					
May 11, 20:	10^{3} (uiq/qJ) ^{II} 0^{10} (b) 10^{2} 0^{10} 0^{10} 0^{10} 0^{10}	$\frac{1}{\Delta \varphi_{ll}}$	Pheno 2010	 CMS is more sensitive to near the H → W⁺W⁻ threshold (Δφ_{ℓℓ} cut) CMS uses all lepton combinations: e⁺e⁻, μ⁺e⁻, e⁺μ⁻, μ⁺μ⁻ DY rejected by strong m_{ℓℓ} cut ATLAS uses μ⁺e⁻, e⁺μ⁻ 				

WARD BURGER AND

4

Simulation Details

- Parton level analysis of signal and background
 - Signal: $pp \to H + nj \to W^+W^- + nj \to \ell^+\nu\ell^-\bar{\nu} + nj, \quad n \le 2$
 - Dominant backgrounds:

irreducible $pp \rightarrow W^+W^- + nj \rightarrow \ell^+\nu\ell^-\bar{\nu} + nj, \quad n \le 2$

$$\begin{array}{lll} \mbox{reducible} & pp & \rightarrow & Wc + nj \rightarrow \ell\nu c + nj \,, & n \leq 4 \\ pp & \rightarrow & t\bar{t} + nj \rightarrow W^+W^-b\bar{b} + nj \rightarrow \ell^+\nu\ell^-\bar{\nu}b\bar{b} + nj, & n \leq 2 \end{array}$$

Additional jets included to model ISR and hard jet recoils
Take CMS and ATLAS preselection cuts with jet veto of

ATLAS: $p_T(j) > 20 \text{ GeV}, |\eta_j| < 4.8$ CMS: $p_T(j) > 15 \text{ GeV}, |\eta_j| < 2.5$

• Energy resolution: $\frac{\delta E}{E} = \frac{a}{\sqrt{E/\text{GeV}}} \oplus b$

where a = 10% (50%) and b = 0.7% (3%) for leptons (jets).

May 11, 2010

Comparison with ATLAS

Table 1: Cut acceptance for $m_H = 170 \text{ GeV}$ for Higgs boson production via gluon fusion, with $H \to WW \to e\nu\mu\nu$, at 14 TeV. The kinematic cuts listed in each row are applied sequentially.

	H + (0, 1, 2)j		$t\bar{t} + (0,1,2)j$		WW + (0, 1, 2)j		Wc + (0-4)j	
1	Our	ATLAS	Our	ATLAS	Our	ATLAS	Our	ATLAS
i.d. + $m_{\ell\ell}$	100%	100%	100%	100%	100%	100%	100%	100%
$ \not\!$	89%	89%	88%	86%	71%	70%	57%	87%
$Z \to \tau \tau$	89%	88%	88%	80%	71%	68%	57%	72%
Jet veto	37%	37%	0.31%	0.23%	31%	33%	28%	36%
b veto	37%	37%	0.31%	0.11%	31%	33%	28%	36%
$\Delta \phi_{\ell\ell}$ and M_T^C	30%	30%	0.07%	$(0.04 \pm 0.03)\%$	12%	$(12 \pm 0.4)\%$	8%	$(18 \pm 18)\%$

- ATLAS comparisons quite good for $m_H = 170$ GeV at 14 TeV
- Similar comparison for other masses at 14 TeV
- Largest uncertainty from $W^{\pm}c$ background
 - Our uncertainty ±10%

Comparison with CMS

Table 1: Acceptance comparison to the CMS study for $m_H = 170 \,\text{GeV}$ at 14 TeV.

	H + (0, 1, 2)j		$t\overline{t} + (0$	(, 1, 2)j	WW + (0, 1, 2)j		
	Our	CMS	Our	CMS	Our	CMS	
lepton selection	100%	100%	100%	100%	100%	100%	
All cuts	9.6%	8.8%	0.016%	0.062%	1.16%	1.07%	

- CMS signal and continuum background acceptance comparison quite good
- The $t\bar{t}$ background acceptance different than in CMS report
 - Smaller jet p_T threshold cut may be responsible
 - Lower p_T region may require parton showering
 - In our results, we provide both our $t\bar{t}$ and the CMS $t\bar{t}$ numbers to compare
 - Due to good rejection of $t\bar{t}$ conclusions not altered

LHC signal significance

Pheno 2010

- Four test masses $m_H = 140, 160, 180$ and 200 GeV at $\sqrt{s} = 7$, 10 and 14 TeV
- Signal significances with 1 fb⁻¹ of integrated luminosity
- Cut preference for $H \rightarrow W^+W^$ threshold apparent in the CMS case
- 3σ evidence possible for $m_H = 160 \text{GeV}$
- Error bars based on Poisson statistics

9

LHC Luminosity required for 5σ

Pheno 2010

 Target luminosity required for significance given by

$$\frac{S}{\sqrt{B}} = \frac{\sigma_S}{\sqrt{\sigma_B}} \times \sqrt{\mathcal{L}}$$

- Higgs boson discovery though the H → W⁺W⁻ channel may require at least 2 fb⁻¹ at 7 TeV using CMS cuts
 - Increased to ~ 8 fb⁻¹ with ATLAS cuts

LHC Luminosity required for 5σ

Pheno 2010

 Target luminosity required for significance given by

$$\frac{S}{\sqrt{B}} = \frac{\sigma_S}{\sqrt{\sigma_B}} \times \sqrt{L}$$

- Higgs boson discovery though the H → W⁺W⁻ channel may require at least 2 fb⁻¹ at 7 TeV using CMS cuts
 - Increased to ~ 8 fb⁻¹ with ATLAS cuts
- Luminosity factor w.r.t 14 TeV machine

$$\frac{\mathcal{L}_i}{\mathcal{L}_{14}} = \left[\left(\frac{\sigma_S}{\sqrt{\sigma_B}} \right)_{14} / \left(\frac{\sigma_S}{\sqrt{\sigma_B}} \right)_i \right]^2$$

• Larger error-bars for CMS due to lower overall rate from tighter cuts

May 11, 2010

Tevatron Sensitivity

- Current combined Tevatron SM Higgs limits naively scaled to give projected limit
 - Combination of modes from CDF and DO with range of 2.0 fb⁻¹ to 5.4 fb⁻¹ of data
- Scaling of combined limit by $\sqrt{\mathcal{L}_{current}/\mathcal{L}_{projected}}$
- 5.4 fb⁻¹ scaling excludes mass ranges from -150 GeV - 180 GeV with 10 fb⁻¹
- More detailed analysis where scaling of individual modes, then combining done with earlier data set
 - Comparison with our $5.4 \text{ fb}^{-1} \rightarrow 10 \text{ fb}^{-1}$ scaling nearly identical

Draper, Liu, Wagner ('09)

Current exclusion @ 95% C.L.: 163 GeV $\leq m_H \leq 166$ GeV

IO

LHC exclusion reach at 7 and 10 TeV

- Recast our results into signal exclusion assuming Poisson statistics
 - ATLAS cuts at 7 TeV with 1 fb⁻¹ comparable to current Tevatron limits
 - With 1 fb⁻¹, CMS cuts may exclude 160 GeV and 180 GeV at 7 TeV
 - Linear interpolation*: 150 GeV 180 GeV

• To compare with CMS/ATLAS analyses:

- CMS Exclusion range from $150 \text{ GeV} \le m_H \le 185 \text{ GeV}$ at 95% C.L $\frac{\text{https://twiki.cern.ch/}}{\text{twiki/bin/view/CMS/}}$ <u>BublicPhysicsResultsHI</u> GSevenTeV
- ATLAS claims similar exclusion

Improvement possible by

- Tuning cuts for trial Higgs masses
- More advanced signal extraction: Matrix Element, Neural Net, Boosted Decision Tree

Conclusions

- Sensitivity of LHC at 7 and 10 TeV to the $H \rightarrow W^+W$ dilepton channel based on CMS and ATLAS-style cuts:
 - Verified ATLAS and CMS significances for 14 TeV
 - Luminosity increase for discovery w.r.t. 14 TeV by factors of 2.5 for 10 TeV and 6-7 for 7 TeV
 - Discovery may require at least 2(8) fb⁻¹ at 7 TeV using CMS(ATLAS) cuts
 - With 1 fb⁻¹, CMS cuts may exclude 160 GeV and 180 GeV at 7 TeV
 - Linear interpolation* yields exclusion from 150 GeV 180 GeV
 - Comparable to recent CMS/ATLAS studies of 150 GeV $\leq m_H \leq 185$ GeV
 - Projected Tevatron exclusion limits with 10 fb⁻¹ may be competitive with LHC reach after 1 fb⁻¹

More sophisticated analyses can further push the reach for the Higgs boson

May 11, 2010

Pheno 2010

CMS Higgs Exclusion and Discovery

See John Conway's Monday CMS Talk

Higgs mass, m $_{\rm H}$ [GeV/c 2]

13

CMS PAS HIG-08-006 for cuts scaled to 7 TeV by cross section ratio

ATLAS Higgs Discovery

Pheno 2010

14