

Search for Higgs Boson Production in Association with a W Boson at CDF

"Phenomenology 2010 Symposium", Madison, Wisconsin

<u>Yoshikazu Nagai</u>

(University of Tsukuba)

on behalf of the CDF Collaboration

<u>Outline</u>

- Introduction and Motivation
- Tevatron and CDF
- Event Selection
- Background Estimation

- Multivariate Analysis Technique
- Results
- Summary

Motivation

- The Higgs boson is the only undiscovered
 - "elementary" particle in the Standard Model
- Its discovery will help answer the questions:
 - How do fermions/weak bosons acquire the mass?
 - How EW symmetry is broken?
- The SM can not predict the Higgs boson mass
 - Need to be determined by experiment !!

Status of SM Higgs boson Search

Current constraint on the SM Higgs boson

- LEP II searches exclude: $M_H < 114.4 \, GeV/c^2$
- Tevatron searches exclude: $162 < M_H < 166 GeV/c^2$
- A fit to precision electroweak data:

$$M_{H} = 87^{+35}_{-26} \, GeV/c^2 \quad M_{H} < 157 \, GeV/c^2$$

SM prefers light SM Higgs boson !!

We focus on the low mass Higgs search with: $W\!H
ightarrow l
u bb$

Why the $WH \rightarrow lvbb$ channel?

Focus on Low mass Higgs boson Search $M_H < 135 GeV/c^2$

Dominant decay for this region is: $H \rightarrow bb$

 $\begin{array}{l} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & &$

Low mass region

Yoshikazu NAGAI (Univ. of Tsukuba)

Tevatron and CDF

Tevatron

 Proton-antiproton collision $\sqrt{S} = 1.96 \text{TeV}$ at

<u>CDF</u>

• One of the general purpose detector

Hadron calorimeter

Muon Detectors Yoshikazu NAGAI

(Univ. of Tsukuba)

Solenoid

р

 Currently > 7.0 fb⁻¹ data on tape.

Event selection

b-tagging categories

6

-> Estimated from MC using theoretical cross section

Event Yield at 4.3fb⁻¹

	ST+ST	ST+JP	ST+NN	1-ST		
Mistag	20.5 +/- 8.85	53.1 +/- 23.1	77.4 +/- 33.5	834.7 +/- 361.8		
W+HF	116.8 +/- 32.6	115.9 +/- 29.6	61.1 +/- 23.2	1435.7 +/- 399.8		
MC Total	98.1 +/- 14.4	95.1 +/- 13.9	45.4 +/- 7.73	509.3 +/- 66.0		
Non-W QCD	19.2 +/- 8.5	21.8 +/- 7.9	17.7 +/- 6.8	464.9 +/- 82.4		
Total background	254.6 +/- 66.7	285.8 +/- 80.3	201.6 +/- 75.3	3244.6 +/- 1055.0		
Observed Events	258	261	204	3160		
WH 115 GeV	3.21	2.62	1.22	6.62		

Yoshikazu NAGAI (Univ. of Tsukuba)

Multivariate Analysis (BNN)

Counting experiment is hopeless due to the large backgrounds

Separate signal and background using multivariate technique CDF Run II Preliminary (4.3 fb⁻¹)

<u>Result</u>

Expected upper limit

4.0 x \sigma(SM) (m_H = 115 GeV)

Observed upper limit

5.3 x σ (SM) (m_H = 115 GeV)

	100	105	110	115	120	125	130	135	140	145	150
Expected	2.8	3.1	3.5	4.0	4.6	6.0	7.4	10.0	14.1	21.8	33.7
Observed	4.0	4.5	5.0	5.3	4.9	7.0	7.5	11.8	15.7	25.0	37.6

Summary

- We have performed search for the SM Higgs boson using the $p p \rightarrow W^{\pm}H \rightarrow l\nu bb$ channel at CDF
- We employ sophisticated multivariate technique: **Bayesian Neural Network**
- We do not observed significant excesses
- We observed the 95% C.L. upper limit @ m_{H} = 115 GeV: **BNN:** 5.3 x σ (SM) (observed) 4.0 x σ (SM) (expected)

and for the future improvement

- We expect to increase the sensitivity with:
 - \succ Including newer data (up to 6 fb⁻¹ for summer 2010)
 - Add new triggers
 Add 3-jet bin

to get more signal acceptance **Stay tuned!!**

Backup

Higgs signal acceptance

• Expected number of signal is calculated as follows:

$$\begin{split} N_{WH \to l\nu b\bar{b}} &= \epsilon_{WH \to l\nu b\bar{b}} \cdot \mathcal{L} \cdot \sigma(p\bar{p} \to WH) \cdot \operatorname{Br}(H \to b\bar{b}) \\ \epsilon_{WH \to l\nu b\bar{b}} &= \epsilon_{Z0} \cdot \epsilon_{\operatorname{trig}} \cdot \epsilon_{\operatorname{leptonid}} \cdot \epsilon_{WH \to \ell\nu b\bar{b}}^{\operatorname{MC}} \cdot \left(\sum_{l=e,\mu,\tau} \operatorname{Br}(W \to l\nu)\right) \end{split}$$

Each category is <u>exclusive</u>

 $m_{H} = 115 \text{ GeV/c}^{2}, 4.3/\text{fb}$

1-ST Tag			ST+JP Tag			
CEM	2.68		CEM	1.07		
PHX	0.53		PHX	0.20	- 2.62	
CMUP	1.39	6 62	CMUP	0.56		
CMX	0.69		CMX	0.26		
IsoTrk(MET2J)	0.95		IsoTrk(MET2J)	0.43		
IsoTrk(MET45)	0.38		IsoTrk(MET45)	0.11		
ST+ST Tag			ST+NN Tag			
CEM	1.25		CEM	0.48	- 1.22	
PHX	0.26		PHX	0.10		
CMUP	0.66	- 3.21	CMUP	0.26		
CMX	0.33		CMX	0.12		
IsoTrk(MET2J)	0.60		IsoTrk(MET2J)	0.21		
IsoTrk(MET45)	0.11		IsoTrk(MET45)	0.05	J	
Yoshikazu NAGAL						

(Univ. of Tota) expected number of signal. 13.70 event

Systematic Uncertainties on Signal Acceptance

- Lepton identification: The difference of ID efficiency between data and MC
- Trigger efficiency: The uncertainties of trigger efficiency
- Initial/Final state radiation (ISR/FSR): The difference between higher and lower ISR/FSR MC samples
- Jet Energy Scale (JES): Estimated by JES \pm 1 σ shift from default value
- Parton distribution function (PDF): The difference among various PDFs (Estimated from MC)
- b-tagging: The difference of b-tagging efficiency between data and MC

• Systematic uncertainties (Central leptons)

b-tagging category	Lepton ID	Trigger	ISR/FSR/PDF	JES	b-tagging	Total
1-ST	2%	< 1%	3.0%	2.3%	4.3%	6.1%
ST+ST	2%	< 1%	4.9%	2.0%	8.6%	10.3%
ST+JP	2%	< 1%	4.9%	2.8%	8.1%	10.1%
ST+NN	2%	< 1%	7.7%	2.2%	13.6%	15.9%

• Luminosity uncertainty ~6%

(Univ. of Tsukuba)

b-jet energy correction

- Di-jet invariant mass is the most sensitive variable in WH->lvbb
- We develop Neural Network b-jet energy correction method

Input variables: Jet E_T and P_T , Jet M_T (= (P_T/P) x M), Jet Raw E_T , L_{XY} , $\sigma(L_{XY})$,

SecVtx P_{τ} , Track Sum $P_{\tau}(P_{\tau}$ sum of tracks inside the jet), Track Max P_{τ}

BNN input variables (ST+ST)

Yoshikazu NAGAI (Univ. of Tsukuba)