

Search for Light Higgs Boson in Top Quark Decays

Andrew Ivanov

Kansas State University CDF Collaboration

> PHENO – 2010 Symposium

> > 10 May, 2010

SM or SM-like Higgs

- Higgs with a mass near 160 Gev is our best shot
- Even if we were lucky and the evidence for Higgs was observed in this region that would introduce a tension in the electroweak fit
 => Call for Physics Beyond Standard Model
- EWK precision data prefers Higgs mass in a region directly excluded by LEP

Theoretical Motivations

- New Higgs decay modes could impact the interpretation of LEP results
- In a natural extension to MSSM --- NMISSIM ---

Light Higgs (A with mass m_A < 2m_b) arises, which is not experimentally excluded

R. Dermisek and J. Gunion PRL 79, 055014 (2009) R. Dermisek and J. Gunion PRD 81, 075003 (2010)

Experimental Motivations

- New Higgs decay modes could impact the interpretation of LEP results
- In a natural extension to MSSM --- NMISSM ---

Light Higgs (A with mass

m_A < m_b) arises, which is not experimentally excluded

Mode Limit (GeV)	SM modes 114.4	2τ or 2b only 115	2 <i>j</i> 113	$\frac{WW^* + ZZ^*}{100.7}$	$\begin{array}{c} \gamma\gamma\\ 117 \end{array}$	E 114	$4e, 4\mu, 4\gamma$ 114?
Mode Limit (GeV)	4b 110	$\begin{array}{c} 4\tau \\ 86 \end{array}$	any (e.g. 4 <i>j</i>) 82	$\frac{2f+E}{90?}$	>		

J. Gunion et al. ARNPS 58, 75 (2008)

Experimental Motivations

 New decay mode H-> AA with A -> ττ could sufficiently change Br(H->bb) to avoid LEP limits

R. Dermisek and J. Gunion PRL 79, 055014 (2009) R. Dermisek and J. Gunion PRD 81, 075003 (2010)

Experimental Motivations

- W branching ratios measured at LEP using WW production are 2.8 σ discrepant
- Possibly evidence for charged Higgs pair production with subsequent decays:
 H⁺-> τν
- If so, H⁺ mass should be just above W mass

R. Dermisek, arXiv:hep-ph/0807.2135

Top Decays

Search Strategy

- The tau identification at low-pt is not very efficient
- We search for very soft isolated tracks ($p_T = [3,20]$ GeV)
- Main background:

Soft parton interactions (Underlying Event)

- Additional ppbar interactions
- The same hard-scatter interaction (tracks from Initial and Final state radiation)

Underlying Event Track Modeling

- Model p_T spectrum of Underlying Event tracks using data
- Study track P_T spectrum in multi-jets, Z events, and lepton+1,2 jets events (correcting for Z/ γ^* tracks)
- The rate is slightly different but P_{T} spectra in different data samples agree with each other

Underlying Event Track Modeling

- Model p_T spectrum of Underlying Event tracks using data
- Study track P_T spectrum in multi-jets, Z events, and lepton+1,2 jets events (correcting for Z/ γ^* tracks)
- The rate is slightly different but P_{T} spectra in different data samples agree with each other

Control Regions Cross-Check

- Perform the fit in the Lepton + 1 and 2 jets region
- The Underlying Event track p_{T} is unconstrained
- The other main contribution is from Z/γ^* events where the second lepton fails the lepton identification requirements, but reconstructed as a soft isolated track
- Extract Z/γ^* cross section that matches our expectations

Signal Region

- "Standard" Top Lepton + Jets selecton used in physics analyses:
- 1 lepton (p_T > 20 GeV)
- Missing Et > 25 GeV
- >=3 jets (E_T > 20 GeV)
- >= 1 b-tagged jet

Signal Region

In addition we require >=1 soft isolated track

- If there are more than 1 track, we always select highest p_T track
- We correct the signal template for the fact that UE track can have higher p_T than taus from A

Results

- We see no evidence for Light Higgs Boson in top quark decays
- We set the first limits on BR (t -> H+b) in this decay mode

Conclusions

- We see no evidence for Light Higgs Boson A in top quark decays:
 - t -> H+b -> WbA > Wbττ
- We set the first limits on BR (t -> H+b) in the considered decay mode