Search for the Associated Production of Z and Higgs Bosons in VV bb final state

ABHINAV DUBEY

UNIVERSITY OF DELHI, INDIA

On behalf of the D0 Collaboration


```
FMJENO 20-10 SM,M|POSHUMM
AIC,D=C,#Cl=d
```

University of Wisconsin-Madison

```
May 10-12, 2010
```


Outline

- Introduction
> DO Calorimeter
$>$ Backgrounds
$>$ Signal Selection
$>B$-tagging
$>$ Multivariate Discriminant
$>$ Limit
$>$ Conclusion and Plans

Introduction

Motivation

High branching ratio for $Z \rightarrow v \bar{v}$
Most sensitive for low mass higgs search ($m_{\mathrm{H}}<135 \mathrm{GeV}$)

Characteristic signal

- Large Missing E_{T} from invisible Z decay
- Two boosted, high P_{T} b-tagged jets
- No identified lepton

The DO Calorimeter

- Hermetic coverage $|\eta|<4.2$.
- Online and offline monitoring.
- Algorithms to scan data from contaminated events.
- Daily pedestals performed.
- Stability ~99.8\%.

Backgrounds

Physics Backgrounds (from MonteCarlo)
W/Z+heavy flavor jets W/Z+light flavor jets
 Top pair and single top, Diboson

Instrumental Backgrounds (from Data)
Multijet control sample
Multijet events with mis-measured and fake MET Validation of background modeling in control samples

Multijet Modeling

Multijet modeling is done from the DATA sideband region where missing E_{T} from tracks and cal is not aligned.

Define Signal Region

$$
\Delta \phi\left(E_{T}, P_{t}\right)<\pi / 2
$$

$$
P_{\mathrm{t}}=\mid \Sigma \mathrm{P}_{\mathrm{T}}(\text { tracks }) \mid
$$

Define Sideband Region

$$
\Delta \phi\left(E_{T^{\prime}}, P_{t}\right)>\pi / 2
$$

Trigger Parametrization

Di-jet + MET Triggers

Parametrization done in $Z \rightarrow \mu^{+} \mu^{-}+j e t s$ events with same jets topology as the signal.
Validation performed in $W \rightarrow \mu \nu+j e t s$ events

Signal Selection

$\boldsymbol{\nu}$ Trigger on Jets +MET

\checkmark Veto on identified leptons to ensure orthogonality to WH searches
$\checkmark \Delta \phi\left(E_{T}, P_{t}\right)<\pi / 2$ (to reject multijet events)

Before b-tagging

Excellent DATA/MC agreement

Multijet Removal

B-tagging

Used a Neural network b-tagging algorithm (uses tracking variables)
double tag : one tight tag and other loose tag - provides best sensitivity single tag : one tight tag and no loose tag - enhances search sensitivity

Final Discriminant

Trained BDT for final separation between signal and remaining SM backgrounds using same 23 variables, achieved good separation.

Main systematic uncertainties are from cross-sections(10\%), luminosity(6\%), b-tagging(8\%) and V+hf jets modeling(10\%)

Limit

No deviation from the Standard Model expectation is observed. Using BDT, set upper limit on the SM Higgs boson production " σ * $\mathrm{BR}(\mathrm{H} \rightarrow \mathrm{bb})$ " for ZH and WH processes (relative to SM value)

For $\mathbf{m}_{\mathbf{H}}=115 \mathrm{GeV}$ limit is a factor 3.7 times the SM cross section.
(expected limit ~ 4.6)
Abhinav Dubey

Conclusions

\checkmark Result based on $5.2 \mathrm{fb}-1$ of data.
\checkmark Published in Physical Review Letters.
\checkmark 15\% sensitivity improvement beyond luminosity gain from our previous result.

Plans:

$\boldsymbol{\checkmark}$ Switch to new b-tagger, better bb and bc discrimination.
\checkmark Improved jet energy resolution.
$\boldsymbol{\checkmark}$ Explore other multi variate techniques.

Stay tuned for exciting results

