MULTI PHOTON SIGNALS AT LHC

Pedro Schwaller

University of Zurich Institute for theoretical Physics

PHENO 2010, Madison, Wisconsin

Work done in collaboration with Ayres Freitas, Daniel Wyler JHEP 0912:027,2009, NPB Proceedings + in preparation

WHY PHOTONS?

Low standard model backgrounds

Clean collider signature

May be signals of extended Higgs sectors or of new strong dynamics

Pedro Schwaller

Multi Photons at LHC

Pheno 2010, Madison

SOURCES FOR MULTI PHOTON SIGNALS

• Light fermiophobic Higgs bosons

Akeroyd et. al. 2004, 2006

• New scalars in Little Higgs models

Freitas, PS, Wyler 2009

- Composite scalars (Pions) in strongly coupled BSM
 Kilic & Okui 2010, Bai & Martin 2010
- Gravitons in RS/ADD models

VECTORLIKE CONFINEMENT

Kilic, Okui, Sundrum 2009

- Fermions ψ with vectorlike $SU(2)_w$ couplings
- Confined by new $SU(N)_{hc}$ \longrightarrow Composite "hyperpions"
- Triplets π_T with 300 600 GeV masses
- Pair produced, decay to SM gauge bosons
- Also appear in other models, e.g. Bai & Martin 2010

LITTLE HIGGS WITH X-PARITY

Freitas, PS, Wyler 2009

Four copies of QCD like nonlinear sigma model

- Effective two Higgs doublet model with little Higgs protection, stable dark matter
- Triplet $\phi_a = \phi_1 + \phi_2$ with $\mathcal{O}(v)$ mass, decay into SM gauge bosons

NEUTRAL SCALAR DECAYS

• Decay through WZW term $\Gamma = \frac{N}{48\pi^2 f} tr(\phi F\tilde{F})$

 No free parameter in branching fractions

Freitas, PS, Wyler

CHARGED SCALAR DECAYS

- Depend on mass splitting $m_a^+ m_a^0$
- Purely radiative splitting: (Kilic & Okui) $\Delta m_a \sim 170 \text{ MeV}$
- Larger splittings possible

Freitas, PS, Wyler

PRODUCTION AT LHC

Four photon signal possible for large splitting

SM BACKGROUNDS (14 TEV)

• Real Backgrounds ($p_T > 40 \text{ GeV}, \Delta R > 0.3, |\eta| < 2.5$)

process	parton level $[fb]$	PGS $[fb]$	$\operatorname{sub}[fb]$
3γ	2.72	2.26	2.04
$3\gamma + j$	2.80	2.04	-
$3\gamma + W^+$	$7.07 \cdot 10^{-3}$	$4.37 \cdot 10^{-3}$	

• Fake Backgrounds $(j \rightarrow \gamma \text{ conversion})$

process	parton level $[fb]$	$\operatorname{sub}[fb]$	PGS fake $[fb]$	est. fake $[fb]$
$2\gamma + j$	2874	2325	5.35	0.465
$2\gamma + jj$	2019	1409	3.95	0.56
$2\gamma + jjj$	651	-	2.44	0.39

S/B ANALYSIS, PT

- p_T of 3rd hardest photon
- higher cuts will efficiently remove background, lose some sensitivity for low masses

S/B CONTINUED

	$p_T > 60 \text{ GeV}$	$p_T > 80 \text{ GeV}$	$\sigma[fb]$
real BG	34%	14%	0.57
fake BG	29%	10%	1.17
Sig 200 GeV	70%	46%	19.0
Sig 400 GeV	92%	81%	2.1
Sig 600 GeV	97%	92%	0.1

- Good prospects for 14 TeV LHC
- 7 TeV LHC with limited range ($m_a < 250 \text{ GeV}$)
- Have a second look at Tevatron!

OTHER PROPERTIES / OUTLOOK

- Accurate mass measurement with few events
- Almost free spin determination: Only 0, 2 possible
- ZZ decays ----> parity
- γZ and Z Z branchings to verify WZW origin

THANKS FOR YOUR ATTENTION!

Pedro Schwaller

Multi Photons at LHC

Pheno 2010, Madison

 Assuming zero background and 10 events for discovery

MASS MEASUREMENT

 m_a^+ with 500 events

Neutral mass from peak in photon invariant Mass

Charged mass from cusp in photon-lepton inv. Mass