The Path to Discovery in CMS

John Conway Univ. of California, Davis

> Pheno 2010 UW Madison

The LHC experiments are at last collecting high energy physics data!

Pixel Tracker ECAL HCAL Muons Solenoid coil

• CRAFT (late 2008)

600k events

- 900 GeV (Nov. 2009) 300k events
- 2.36 TeV (Dec. 2009) 20k events

CRAFT (late 2008) 600k events
⇒ 23 JINST papers on performance
900 GeV (Nov. 2009) 300k events

• 2.36 TeV (Dec. 2009) 20k events

CRAFT (late 2008) 600k events

 ⇒ 23 JINST papers on performance

900 GeV (Nov. 2009) 300k events

 ⇒ first physics paper and tons of calibration

2.36 TeV (Dec. 2009) 20k events

• CRAFT (late 2008) 600k events \Rightarrow 23 JINST papers on performance • 900 GeV (Nov. 2009) 300k events \Rightarrow first physics paper and tons of calibration • 2.36 TeV (Dec. 2009) 20k events \Rightarrow the first glimpse of high energy

CMS' First Physics Paper!

 inclusive particle p_T, and pseudorapidity at 900 GeV and 2.36 TeV

• CRAFT (late 2008)

600k events

- 900 GeV (Nov. 2009) 300k events
- 2.36 TeV (Dec. 2009) 20k events

- CRAFT (late 2008)
 - 600k events

- 900 GeV (Nov. 2009) 300k events
- 2.36 TeV (Dec. 2009) 20k events

• 7 TeV (Mar. 30 - ?) > 1.2 nb⁻¹

- CRAFT (late 2008) 600k events
- 900 GeV (Nov. 2009) 300k events
- 2.36 TeV (Dec. 2009) 20k events

- 7 TeV (Mar. 30 ?) > 1.2 nb⁻¹
 - First look at results from 7 TeV running!

LHC has achieved $\sim 10^{28}$ cm⁻¹s⁻¹

CMS: Integrated Luminosity 2010

CMS is Performing Well!

CMS Tracker: Pixels/Strips

Ks

8

See very clean $D^* \rightarrow D^0 \pi$, $D^0 \rightarrow K \pi$

Tracking: dE/dx

Make use of large number of samples along track to do particle ID with dE/dx

Electrons/Photons/Conversions

Vertexing and b-tagging

Basic b-tagging variables are well described - need more exposure and tuning with new data

CMS Preliminary, √s = 900 GeV

2

3

4

Number of Secondary Vertices

 10^{2}

ECAL: π^0 and η

Muon is our Middle Name

Jets, Jets, Jets!

- I. calorimeter jets (CALO)
- 2. "jet plus tracks" jets (JPT)
- 3. particle flow jets

jet algorithm: anti-k_T, R = 0.5

particle flow dramatically reduces magnitude of jet corrections:

Jets: the first inverse nb at 7 TeV

CMS

Particle flow jet performance

Jets: the first inverse nb at 7 TeV

excellent agreement with simulation!

Jets: the first inverse nb at 7 TeV

Will surpass Tevatron very soon in dijet searches!

High-mass dijet at 7 TeV

Particle flow jet performance

EM fraction better described at higher jet energy

need to clean up calorimeter spikes and noise in ECAL, HCAL, and HF

W⁺: 56 nb W⁻: 39.5 nb total: 95.5 nb

Z/γ* : 49.5 nb

$W \rightarrow ev$ candidate

$W \rightarrow \mu \nu$ candidate

$Z \rightarrow ee \ candidate$

CMS Experiment at LHC, CERN

Early Signposts: $W \rightarrow \ell \nu$

muons

electrons

Expect very clean $W \rightarrow \ell v$ distributions

Early Signposts: $Z \rightarrow \ell \ell$

electrons

muons

 $Z \rightarrow \ell \ell$ is our most important early calibration

significant samples coming very soon!

Early Signposts: top

With ~20 pb⁻¹ expect to observe hundreds of ttbar events, and calibrate jet energy scale, b-tagging, MET, and later test boosted top algorithms "The LHC only has 7 TeV, and will only get one inverse femtobarn...it won't do any better than the Tevatron!"

New 7 TeV BSM projections

Available on CMS information serverCMS NOTE 2010/008Image: Compact Muon Solenoid ExperimentImage: CMS Note Solenoid ExperimentImage: Compact Muon Solenoid ExperimentImage: CMS CERN, CH-1211 GENEVA 23, Switzerland

5th May 2010

The CMS physics reach for searches at 7 TeV

The CMS Collaboration

Abstract

Some examples of the expected reach of CMS in terms of searches for new physics, for a protonproton centre-of-mass energy of 7 TeV, are shown. Integrated luminosities between 100 pb^{-1} and 1 fb^{-1} are considered. The prospects are preliminary, and based on existing studies at higher energies.

note posted at Pheno 2010 website

New 7 TeV BSM projections

Rescaling 10 TeV to 7 TeV

Take 10 TeV results for new particle searches and simply scale by expected qq, gg luminosity ratio (courtesy James Stirling)

Early new physics: b' search

With ~200 pb⁻¹ we can exceed Tevatron sensitivity

Early new physics: b' search

With ~200 pb⁻¹ we can exceed Tevatron sensitivity

Early new physics: ED in YY

 look for <u>very</u> high mass photon pairs in LED and Randall-Sundrum models respectively:

With I fb⁻¹ will push past Tevatron

Early new physics: HSCP

• heavy stable charged particles:

Early new physics: stopped gluinos

look for gluino decays during periods of no beam including

- inter-bunch gaps
- no-beam periods

result from 30 days running at 10³² cm⁻²s⁻¹

SUSY: jets + missing E_T

• 3 or more jets, $E_T > 50 \text{ GeV}$

"Classic" all-jets search: • missing $E_T > 250$ GeV

no leptons

SUSY: like-sign dileptons

Similar sensitivity seen in like-sign dilepton analysis

SUSY: like-sign dileptons

SM Higgs: WW $\rightarrow 2\ell 2\nu$

No discovery of SM Higgs in first run at 7 TeV... sensitivity similar to Tevatron with 1 fb⁻¹

SM Higgs: WW $\rightarrow 2\ell 2\nu$

No discovery of SM Higgs in first run at 7 TeV... sensitivity similar to Tevatron with 1 fb⁻¹

No exclusion of low mass SM Higgs anticipated in first run at 7 TeV

MSSM Higgs

Most sensitive: tau pair decays (~9% BR) of h/H/A

di-tau sensitivity for H/A will soon exceed Tevatron!

(stay tuned: we will do even better than this!)

LHC: the coming weeks

From J. Wenninger, LMC 2010-04-28

Stage	lb (protons)	Nb	Stored E (kJ)	Stored E step	Peak L (Hz cm-2)	
3 fat pilots (*)	1.00E+10	3	17	1.00	1.34E+28	Now
4 bunches	2.00E+10	4	44.8	2.60	7.63E+28	
4 bunches	5.00E+10	4	112.0	2.50	4.77E+29	ob ^{-I} /mo
8 bunches	5.00E+10	8	224.0	2.00	9.54E+29	
4x4 bunches	5.00E+10	16	448.0	2.00	1.91E+30	
8x4 bunches	5.00E+10	32	896.0	2.00	3.81E+30	
43x43	5.00E+10	43	1204.0	1.34	5.13E+30	
8 trains of 6 b	8.00E+10	48	2150.4	1.79	1.33E+31	ob ⁻¹ /day
50 ns trains	8.00E+10	96	4300.8	2.00	2.67E+31	

$\beta^* = 2 m$, nominal emittance

(*) Initial plan was with 4 bunches of 5E9, L ~ 4E27

Each step requires about 10 fills. Requirement from the Machine Protection Panel.

This is truly the dawn of the LHC decade!

This is truly the dawn of the LHC decade! Discoveries could happen fast.

This is truly the dawn of the LHC decade! Discoveries could happen fast.

Fasten your seat belts...