

New Results from MINOS

Matthew Strait

University of Minnesota for the MINOS collaboration

Phenomenology 2010 Symposium 11 May 2010

The MINOS Experiment

MN

- A long-baseline accelerator neutrino oscillation experiment
- ν_{...} produced at Fermilab
- 1 kt near detector at Fermilab
- 5.4 kt far detector in northern MN, 735 km away
- Functionally identical magnetized detectors:
 - Alternating planes of steel & solid scintillator
 - 3D reconstruction via alternating scintillator orientation

NuMI Beam

- 120 GeV protons incident on a graphite target
- In our normal mode: 92% ν_{μ} 7% $\overline{\nu}_{\mu}$ 1% $\nu_{e} + \overline{\nu}_{e}$
- Can also run in antineutrino-mode
- Beam exposure measured in protons-on-target (POT)
 - 7.1×10²⁰ POT of neutrinos in Runs I-III
 - 1.7×10²⁰ POT of anti-neutrinos in Run IV
 - 0.6×10²⁰ POT and counting of neutrinos in Run V
- Most analyses have looked at the first 3.2×10²⁰ POT so far
 - Plan to have 7.1×10²⁰ POT analyses ready for Neutrino 2010 (June)

Physics Goals

- v_{μ} CC disappearance
 - Precision measurement of $|\Delta m^2_{23}|$ and $\sin^2 2\theta_{23}$
- $\overline{\nu}_{\mu}$ CC disappearance
 - Tests CPT conservation
 - Measure $\overline{\nu}$ parameters $|\Delta \overline{m}_{23}^2|$ and $\sin^2 2\overline{\theta}_{23}$
- Neutral current event disappearance
 - Signature of sterile neutrinos or decay
- v_{e} appearance
 - Sensitive to θ_{13} , δ_{CP}

Neutrino Disappearance

- With 3.2×10²⁰ POT, expect 1065±60 (syst) without oscillations
- Observed 848: Best fit $|\Delta m^2| = 2.43 \times 10^{-3} \,\text{eV}^2$, $\sin^2 2\theta = 1.0$
 - Backgrounds: 0.7 cosmic, 2.3 rock μ , 5.9 NC, 1.5 ν_{τ} appearance
 - PRL 101 131802 (2008)

Neutrino Disappearance

- Discriminate between models of v disappearance
- Decay
 - Barger *et al.*,
 PRL 82 2640 (1999)
 - Disfavored at 3.7σ with respect to oscillation
 - Including NC events (see later) ⇒ 5.2σ
- Decoherence
 - Fogli *et al.*,
 PRD 67 093006 (2003)
 - Disfavored at 5.7σ with respect to oscillation

Neutrino Disappearance

- 7.1×10²⁰ POT analysis this summer
 - 2.2 times the exposure of last publication
- Analysis improvements:
 - Improved reconstruction & Monte Carlo
 - Reduced systematics
 - Improved particle ID

μ

- Improved shower energy estimation
- Separation of events by resolution
- Inclusion of:
 - Antineutrinos, assuming CPT
 - Rock μ

11 May 2010

8

cross-sections of v are on average higher energy

- $\overline{\nu}$ have $\sim^{1}/_{3}$ the
- \overline{v} produced in v-mode
- analysis of these:
- Challenges to an
- ν-mode: 7% ν
 _"

- We have analyzed \overline{v} in 3.2×10²⁰ POT v-mode data
- 1.7×10^{20} POT \overline{v} -mode analysis in progress

Antineutrino Disappearance

- CPT predicts: 58.3±3.6 (syst) events
 - Observed **42**: 1.9σ deficit
 - No oscillation excluded at 99%
 - CPT-conservation allowed at 90%
- Improves on previous global fit
 - Gonzalez-Garcia, Maltoni Phys Rept 460 1 (2008)

10

Antineutrino Disappearance

- Have collected 1.7×10²⁰ POT of dedicated \overline{v} running
- Analysis coming this summer
- Sensitivity at CPT-conserving point shown

Neutral Current Event Disappearance

- Deficit ⇒ neutrino decay or mixing with sterile flavor v_s
- 3.2×10²⁰ POT analyzed so far
 - PRD 81 052004 (2010)
 - No significant deficit observed
 - Fraction of disappeared v_{μ} converting to v_{s} < 52% (90% CL)
 - Several 4-neutrino models consistent with no sterile mixing:
 - $\theta_{24} < 11^\circ; \ \theta_{34} < 56^\circ \ (90\% \ \text{CL})$
 - Joint decay/oscillation fit constrains neutrino lifetime
 - $\tau_3/m_3 > 2.1 \times 10^{-12} \text{ s/eV} (90\% \text{ CL})$

A sub-dominant oscillation mode controlled by θ_{13}

Electron Neutrino Appearance

 $\mathsf{P}(\nu_{\mu} \rightarrow \nu_{e}) \approx \sin^{2}\theta_{23} \sin^{2}2\theta_{13} \sin^{2}(1.267\Delta m_{31}^{2}L/E)$

Matthew Strait, University of Minnesota

12

Electron Neutrino Appearance

- With 7×10²⁰ POT:
 - If $\theta_{13} = 0$, predict 49.1 ± 2.7 (syst) events, observed 54
 - Dominant background is NC

Electron Neutrino Appearance

- First experiment with result beyond the Chooz limit
- For $\delta_{CP} = 0$, $\sin^2 2\theta_{23} = 1$:
 - $\sin^2 2\theta_{13} < 0.12$ (0.20) for normal (inverted) mass hierarchy
- Difficult analysis, but still statistics-limited. Future plans:
 - Addition of Run IV v data (1.7×10²⁰ POT)
 - Addition of Run V ν data (0.6×10²⁰ POT and counting)
 - Improved NC/ v_{e} discrimination

Summary

- v_{μ} disappearance
 - World leading measurement of $|\Delta m^2_{23}|$
- $\overline{\nu}_{\mu}$ disappearance
 - First long-baseline measurement of $|\Delta \overline{m}_{23}^2|$, $\overline{\theta}_{23}$
- Neutral current disappearance
 - Constraints put on sterile neutrino mixing and decay
- ν_e appearance
 - First results below the Chooz limit
- Most analyses planning to have new results ready for Neutrino 2010

Backup

Neutrinos and Physics Motivation

- There are 3 generations of neutrino: v_{μ} , v_{μ} , v_{τ}
- neutrinos have mass and they oscillate
- neutrino oscillations are governed by the PMNS matrix

PMNS mixing matrix (Pontecorvo-Maki-Nakagawa-Sakata):

$$\begin{pmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} \end{pmatrix} \begin{pmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \end{pmatrix} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \\ \end{pmatrix} \begin{pmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \end{pmatrix}$$
Weak PMNS Mass where $s_{ij} = \sin\theta_{ij}$ and $c_{ij} = \cos\theta_{ij}$
Eigenstates $ij = 12 = s$ solar terms $ij = 13 = s$ atmospheric terms $\delta = s$ CP violating phase

Analysis Results - Four-Flavor Model

- Will consider the same sterile neutrino oscillation models with three active and one sterile neutrinos studied in the PRD:
 - I) m4 >> m3
 - 2) m4 = ml
- Take into account possible V_e appearance with two sets of fits:
 - $\Theta_{13} = 0$
 - $\theta_{13} = 0.20, \ \delta_{CP} = \pi \text{ (from MINOS } 90\% \text{ C.L. limit for } \Delta m^2 > 0\text{)}$
- $\Delta_{41} = 0$ $\Delta_{43} >> \Delta_{31}$ v_3 Δm_{42}^2 Δm_{atm}^2 ν_3 Δm_{atm}^2 v_2 Δm_{sol}^2 v_e ν_{τ} \mathbf{v}_{μ} γ_{s} ν_{μ} v_s νe ν_{τ}

 Will also calculate fraction of active neutrinos that may oscillate into a sterile neutrino for each model

Rock Muons

- Depth of oscillation deficit \Rightarrow sin²2 θ
 - High E neutrinos reconstructed as low E muons form a **background**
- Location of deficit $\Rightarrow \Delta m^2$
 - Also partially masked by high energy feed-down
 - But <u>total magnitude</u> of deficit alone gives a strong constraint
 - Strength of this analysis
- Splitting events into several categories isolates the stronger parts of the signal

Matthew Strait, University of Minnesota

Expected signal at Chooz limit: 24 events => 3.2σ signal at this limit

What is Expected in Soudan?

- Measure Near Detector E_v spectrum
- To first order the beam spectra at Soudan is the same as at Fermilab, but:
 - Small but systematic differences between Near and Far
 - Use Monte Carlo to correct for energy smearing and acceptance
 - Use our knowledge of pion decay kinematics and the geometry of our beamline to predict the FD energy spectrum from the measured ND spectrum

Far/Near Extrapolation

- Beam Matrix encapsulates the knowledge of pion 2-body decay kinematics & geometry
- Beam Matrix provides a very good representation of how the Far Detector spectrum relates to the near one
- PDF of a E_v bin @ Near Det as it spreads to the Far Det