Non-Universal Gaugino Masses, Dark Matter and the LHC

Brent D. Nelson

㴆旨 Northeastern
 $\begin{array}{llllllllll}U & N & I & V & E & R & S & I & T & Y\end{array}$

with B. Altunkaynak, M. Holmes,

+ University of Michigan/University of Wisconsin

Outline

- Gaugino Sector of the MSSM (2 Slides)
- Dark Matter Hints (8 Slides)
- High-Energy Theoretical Motivation (2 Slides)
- LHC Phenomenology (4 Slides)

Quick Review

Gaugino Sector Basics

- Gauginos part of vector supermultiplets: $A_{a}=\left\{\lambda_{a},\left(A_{\mu}\right)_{a}, D_{a}\right\}, a=1,2,3$

Names	spin $1 / 2$	spin 1	$S U(3)_{C}, S U(2)_{L}, U(1)_{Y}$
gluino, gluon	\widetilde{g}	g	$(\mathbf{8}, \mathbf{1}, 0)$
winos, W bosons	$W^{ \pm} W^{0}$	$W^{ \pm} W^{0}$	$(\mathbf{1}, \mathbf{3}, 0)$
bino, B boson	\widetilde{B}^{0}	B^{0}	$(\mathbf{1}, \mathbf{1}, 0)$

- Supersymmetry breaking independent of EWSB Thus in SUSY limit we have massless gauginos up to EWSB effects
- Soft SUSY-breaking gaugino masses: $\mathcal{L}_{\text {soft }} \ni-\frac{1}{2} M_{a} \lambda_{a} \lambda_{a}+$ c.c.
- Gaugino masses run independently at one loop

$$
\frac{d M_{a}}{d t}=\frac{1}{8 \pi^{2}} b_{a} g_{a}^{2} M_{a}, \quad b_{a}=-\left(3 C_{a}-\sum_{i} C_{a}^{i}\right) \Rightarrow\left\{b_{1}, b_{2}, b_{3}\right\}=\left\{\frac{33}{5}, 1,-3\right\}
$$

- Three ratios M_{a} / g_{a}^{2} therefore constant (up to two loop effects)

$$
\frac{M_{1}}{g_{1}^{2}} \simeq \frac{M_{2}}{g_{2}^{2}} \simeq \frac{M_{3}}{g_{3}^{2}} \rightarrow M_{3}: M_{2}: M_{1} \simeq 6: 2: 1 \text { at EW scale }
$$

Gaugino Masses - EM Neutral Sector

\Rightarrow Can model possibilities via $M_{a}=m_{1 / 2}\left(1+\delta_{a}\right)$
Arkani-Hamed, Delgado, Giudice, NPB 741 (2006) 108

- $\delta_{1}=\delta_{2}=\delta_{3}$ produces bino-like LSP: $\widetilde{N}_{1} \sim \widetilde{B} ; \quad \widetilde{N}_{2} \sim \widetilde{W}^{0}$
- $\left\{\delta_{1}=0, \delta_{2}<0\right\}$ produces wino-like LSP
- $\left\{\delta_{2}>0, \delta_{3}<0\right\},\left|\delta_{3}\right|<\left|\delta_{2}\right|$ produces Higgsino-like LSP via RGEs + EWSB

$$
M_{Z}^{2}=5.9 M_{3}^{2}-1.8 \mu^{2}+0.4 m_{0}^{2}-0.4 M_{2}^{2}+\ldots
$$

Kane, Lykken, BDN, Wang, PLB 551 (2003) 146

Dark Matter

Dark Matter Signals - the Earliest SUSY Signature

- Assumption: lightest neutralino is stable LSP \Rightarrow dark matter

Goldberg, PRL 50 (1983) 1419

- Prediction: annihilation into photons, positrons, anti-protons, neutrinos

Silk \& Srednicki, PRL 53 (1984) 624
Photons \& neutrinos "point" back to source: high density areas such as galactic center or center of sun/earth
Charged particles must be propagated from origin to earth numerically Both depend on the halo profile $\rho_{\chi}(r)$ assumed for the dark matter candidate, but to varying degrees

- Begin with positrons:

$$
\begin{gathered}
\Phi_{\bar{e}}(E) \simeq \frac{\tau_{E} B_{\bar{e}} c}{8 \pi b(E)} \frac{\rho_{\chi}^{2}\left(r=R_{0}\right)}{m_{\tilde{N}_{1}}^{2}} F(E), \quad b(E)=1 \mathrm{GeV}\left(\frac{E}{1 \mathrm{GeV}}\right)^{2} \\
F(E)=\int_{E}^{M_{\tilde{N}_{1}}} d E^{\prime} \sum_{k}\langle\sigma v\rangle_{\text {halo }}^{k} \frac{d N_{\bar{e}}^{k}}{d E^{\prime}} \cdot \mathcal{I}\left(E, E^{\prime}\right)
\end{gathered}
$$

$B_{\bar{e}}=$ boost factor, $\tau_{E}=\tau \times 10^{16} \sec$ is the diffusion time scale and $\mathcal{I}\left(E, E^{\prime}\right)$ is the halo function
For SUSY models, most important final state is usually $k=W^{+} W^{-}$

SUSY Fits to Positron Flux Measurements

PAMELA Collaboration, arXiv:1001.3522

\Rightarrow Best fits require $\langle\sigma v\rangle_{W W} \simeq 2 \times 10^{-24} \mathrm{~cm}^{3} / \mathrm{s}$ and prefer NFW "min" profile
Feldman, Kane, Lu, BDN, arXiv:1002.2430

SUSY Fits to Positron Flux Measurements

\Rightarrow Pure wino not necessary - but must compensate with $B_{\bar{e}}$ (here B_{HALO})
Feldman, Liu, Nath, BDN, arXiv:0907.5392

Photons versus Positrons

Photons versus Positrons

Direct Detection Experiments: CDMS II

\Rightarrow December 2009 data release for 14 Ge detectors by CDMS-II Collaboration

CDMS II Collaboration, Science 327 (2010) 1620

- Two events in signal region with (revised) background estimate of 0.8 ± 0.1 (stat) ± 0.2 (sys) events
- Implies an interaction cross-section $\sigma_{\chi p}^{\mathrm{SI}} \sim 10^{-44} \mathrm{~cm}^{2}=1 \times 10^{-8} \mathrm{pb}$

Fitting to CDMS II

\Rightarrow Differential recoil rate at direct detection experiments given by

$$
\frac{d R}{d E}=\sum_{i} c_{i} \frac{\rho_{\chi} \sigma_{\chi i}^{\mathrm{SI}}\left|F_{i}\left(q_{i}\right)\right|^{2}}{2 m_{\chi} \mu_{i \chi}^{2}} \int_{v_{\min }}^{\infty} \frac{f(\vec{v}, t)}{v} d^{3} v
$$

with $F_{i}\left(q_{i}\right)$ being a nuclear form factor for i-th target nucleus

- Calculation of integrated event rate depends on experimental configuration

$$
R=\int_{E_{\min }}^{E_{\max }} \frac{d R}{d E} d E ; \quad \text { (Germanium) }: 10 \mathrm{keV} \leq E_{\text {recoil }} \leq 100 \mathrm{keV}
$$

Point	A	B	C	D	E
$m_{\chi_{1}^{0}}(\mathrm{GeV})$	138	190	175	112	230
δ_{2}	0.65	0.62	-0.6	0.82	-0.47
δ_{3}	-0.35	-0.3	-0.3	-0.35	-0.3
$\mathrm{~B} \%$	3.0%	70.2%	0.3%	5.4%	40.9%
$\mathrm{~W} \%$	0.4%	0.4%	95.8%	0.5%	53.0%
$\mathrm{H} \%$	96.6%	29.4%	3.9%	94.1%	6.1%
$\sigma_{\chi p}^{\mathrm{SI}} \times 10^{45}\left(\mathrm{~cm}^{2}\right)$	11.9	44.4	41.3	35.3	74.8
$N_{\mathrm{Ge}}(184 \mathrm{~kg}-$-days $)$	0.51	1.36	1.30	1.65	1.90

DM Hints - Lessons Thus Far

\Rightarrow Wino-like LSP preferred, but probably not 100% wino

- Pure wino better for PAMELA (no boost factor) but tension with anti-protons and photons without help from halo model and/or diffusion parameters
- Higgsino or Bino component of 5-10\% (at least) needed to avoid photon and anti-proton constraints - but need $\mathcal{O}(5)$ boost factors to get PAMELA
- If CDMS-II is seeing a signal, will need even more substantial Higgsino component for large enough cross section

All scenarios (probably) require non-thermal relic production mechanisms

High-Scale Theoretical Motivation

What Can Cause Non-Universalities?

In supergravity, gaugino masses have a very simple form:

$$
m_{\lambda_{a}}=\sum_{n} \frac{g_{a}^{2}}{2} \frac{F^{n}}{M_{\mathrm{PL}}} \operatorname{Re}\left[\partial_{n} f_{a}\right] ; \quad f_{a}=f_{a}\left(Z^{n}\right)
$$

where f_{a} are gauge kinetic functions which depend on SM gauge singlets Z^{n}
\Rightarrow So what are some mechanisms for producing non-universal gaugino masses?

What Can Cause Non-Universalities?

In supergravity, gaugino masses have a very simple form:

$$
m_{\lambda_{a}}=\sum_{n} \frac{g_{a}^{2}}{2} \frac{F^{n}}{M_{\mathrm{PL}}} \operatorname{Re}\left[\partial_{n} f_{a}\right] ; \quad f_{a}=f_{a}\left(Z^{n}\right)
$$

where f_{a} are gauge kinetic functions which depend on SM gauge singlets Z^{n}
\Rightarrow So what are some mechanisms for producing non-universal gaugino masses?

1. Grand Unified Theories
2. Independent Gauge Kinetic Functions
3. Loop Effects

What Can Cause Non-Universalities?

In supergravity, gaugino masses have a very simple form:

$$
m_{\lambda_{a}}=\sum_{n} \frac{g_{a}^{2}}{2} \frac{F^{n}}{M_{\mathrm{PL}}} \operatorname{Re}\left[\partial_{n} f_{a}\right] ; \quad f_{a}=f_{a}\left(Z^{n}\right)
$$

where f_{a} are gauge kinetic functions which depend on $\underline{\text { SM gauge singlets } Z^{n}}$
\Rightarrow So what are some mechanisms for producing non-universal gaugino masses?

1. Grand Unified Theories
2. Independent Gauge Kinetic Functions
3. Loop Effects
\Rightarrow An example of the last item is the mirage pattern of gaugino masses

$$
M_{1}: M_{2}: M_{3} \simeq(1+0.66 \alpha):(2+0.2 \alpha):(6-1.8 \alpha)
$$

Manifestations of the Mirage Pattern

The mirage pattern (competition between tree and anomaly-mediated contributions to soft masses) appears in a number of phenomenologically successful string constructions:

- Kähler stabilized heterotic string models
- Type-IIB flux compactifications with anti- D_{3} branes

Kachru, Kallosh, Linde, Trivedi, PRD 68 (2003) 046005 Choi, Falkowski, Nilles, Olechowski, NPB 718 (2005) 113

- M-theory compactified on fluxless G_{2} manifolds
\Rightarrow Common features:

- Single modulus stabilized by gaugino condensation
- Kähler potential for this modulus substantially altered from tree-level value
- Tuning of cosmological constant $(\langle V\rangle)$ to zero by adjusting parameters

LHC Implications

General Methodology

- For each point studied 100,000 events generated with PYTHIA + PGS4 with the level 1 trigger only
\Rightarrow Typically this is about $5 \mathrm{fb}^{-1}$ of signal
- A single SM sample was generated, including $5 \mathrm{fb}^{-1}$ of top, bottom, dijets and gauge boson production (both single and double production)
\Rightarrow This background sample was suitably weighted to be included with each of our "signal" samples
- Initial object-level cuts to keep an object in the event record

Object	Minimum p_{T}	Minimum $\|\eta\|$
Photon	20 GeV	2.0
Electron	20 GeV	2.0
Muon	20 GeV	2.0
Tau	20 GeV	2.4
Jet	50 GeV	3.0

\Rightarrow After object-level cuts we impose event-level cuts - an example:

- $E_{T}>150 \mathrm{GeV}$
- Transverse sphericity $S_{T}>0.1$
- $H_{T}=E_{T}+\sum_{\text {Jets }}$ s $_{T}^{\text {jet }}>600 \mathrm{GeV}$ (400 GeV for events with 2 or more leptons)

Benchmark Models I: PAMELA Examples

Feldman, Liu, Nath, BDN, reference

Mass	Mixed LSP	Pure Wino LSP
$m_{\tilde{N}_{1}}$	198.9	195.2
$m_{\tilde{N}_{2}}$	217.0	357.0
$m_{\tilde{N}_{3}}$	429.9	1025
$m_{\tilde{N}_{4}}$	451.3	1029
$m_{\widetilde{C}_{1}}$	208.8	195.5
$m_{\widetilde{C}_{2}}$	448.6	1036
$m_{\tilde{t}_{1}}$	648.5	1516
$m_{\tilde{t}_{2}}$	866.8	1749
$m_{\tilde{b}_{1}}$	841.4	1729
$m_{\tilde{b}_{2}}$	970.2	1902
$m_{\tilde{\tau}_{1}}$	817.7	1011
$m_{\tilde{\tau}_{2}}$	822.8	1041
$m_{\tilde{g}}$	707.1	1929

- Big impact of gluino mass in number of multijet events
- Small mass gaps significantly reduce number of leptonic events

Benchmark Models II: CDMS-II Examples

Holmes and BDN, arXiv:0912.4507

Point	C	D	E
δ_{2}	-0.6	0.82	-0.47
δ_{3}	-0.3	-0.35	-0.3
$\mathrm{~B} \%$	0.3%	5.4%	40.9%
$\mathrm{~W} \%$	95.8%	0.5%	53.0%
$\mathrm{H} \%$	3.9%	94.1%	6.1%
$m_{\tilde{N}_{1}}$	175	112	230
$m_{\tilde{N}_{2}}$	235	130	239
$m_{\tilde{N}_{3}}$	505	252	504
$m_{\tilde{N}_{4}}$	513	846	515
$m_{\widetilde{C}_{1}}$	175	123	234
$m_{\widetilde{C}_{2}}$	514	846	515
$m_{\tilde{g}}$	952	890	951
$m_{\tilde{t}_{1}}$	719	544	709
$m_{\tilde{t}_{2}}$	862	964	865
$m_{\tilde{b}_{1}}$	809	766	812
$m_{\tilde{b}_{2}}$	874	943	871
$m_{\tilde{\tau}_{1}}$	344	338	352
$m_{\tilde{\tau}_{2}}$	414	752	424
m_{h}	113	114	113
$\sigma_{\text {SUSY }}^{7 \mathrm{TeV}}(\mathrm{pb})$	1.2	2.7	0.4
$\sigma_{\text {SUSY }}^{10 \mathrm{TeV}}(\mathrm{pb})$	2.5	5.1	1.3
$\sigma_{\text {SUSY }}^{14 \mathrm{TeV}}(\mathrm{pb})$	5.7	10.0	3.7

- All models can produce signals at CDMS II - C \& E can fit PAMELA data as well
- Signal simulated: $1 \mathrm{fb}^{-1}$ at $\sqrt{s}=14 \mathrm{TeV}$
- Again, healthy multijets but disappearance of leptonic events

Numbers of Events

Point	C	D	E
Multijets	402	436	298
$1 \ell+$ jets	202	310	111
OS $2 \ell+$ jets	12	45	7
SS $2 \ell+$ jets	6	16	3
$3 \ell+$ jets	4	6	1

Significance S / \sqrt{B}

Point	C	D	E
Multijets	26.9	29.1	19.9
$1 \ell+$ jets	8.2	12.5	4.5
OS $2 \ell+$ jets	2.0	7.4	1.2
SS $2 \ell+$ jets	2.3	6.0	1.1
$3 \ell+$ jets	1.6	2.5	0.4

General PAMELA-consistent Models

\Rightarrow General rule: Discovery of DM-motivated models needs a light gluino
Feldman, Kane, Lu, BDN, arXiv: 1002.2430

- High wino-content (for PAMELA) implies small mass gap between $\widetilde{C}_{1} / \widetilde{N}_{2}$ and LSP
- Result: major reduction in expected leptonic SUSY signatures
- Increasing Higgsino content to match CDMS (and photon data) requires a light gluino
- Result: multijet signals may be our only handle
\Rightarrow We will need to learn how to do more with less!
Must look for new signatures targeted to non-universalities in gaugino sector

Summary

- Dark matter hints strongly disfavor pure Bino LSP (i.e. mSUGRA)
- PAMELA needs wino predominance; CDMS/photons want strong Higgsino admixture
- Such models find a natural home in many (all?) semi-realistic string constructions
- Likely that mass gaps between $\widetilde{C}_{1} / \widetilde{N}_{2}$ and LSP small, so leptonic signatures a bust
- Will need to learn to do more with jet-based signatures and hope the gluino is lighter than in mSUGRA models

Summary

- Dark matter hints strongly disfavor pure Bino LSP (i.e. mSUGRA)
- PAMELA needs wino predominance; CDMS/photons want strong Higgsino admixture
- Such models find a natural home in many (all?) semi-realistic string constructions
- Likely that mass gaps between $\widetilde{C}_{1} / \widetilde{N}_{2}$ and LSP small, so leptonic signatures a bust
- Will need to learn to do more with jet-based signatures and hope the gluino is lighter than in mSUGRA models
\Rightarrow Gaugino sector is truly a window on the high-energy world: we may be on the verge of revolutionary discoveries!

Back-Up Slides

What About Anti-protons?

BESS Collaboration, PRL 84 (2000) 1078; CAPRICE Collaboration, Astrophys. J. 561 (2001) 787

\Rightarrow Greater tension for pure wino LSP; OK for NFW "min" and "med" halo profiles

Gamma Ray Signals

\Rightarrow Halo profiles especially important in this situation

- Annihilation rates scale like the square of the density
- We observe the entire line-of-sight to the galactic center - therefore need to know the halo profile $\rho_{\chi}(r)$
- Many possible profiles suggested in literature; each can be summarized by one parameter $\bar{J}(\Delta \Omega)$
$\bar{J}(\Delta \Omega) \equiv \frac{1}{\Delta \Omega} \int_{\Delta \Omega} d \Omega^{\prime} J\left(\psi^{\prime}\right) ; \quad J(\psi)=\frac{1}{8.5 \mathrm{kpc}} \int_{\text {l. o. s. }} d s(\psi)\left(\frac{\rho_{\chi}(r)}{0.3 \mathrm{GeV} / \mathrm{cm}^{3}}\right)^{2}$
\Rightarrow Two types of signal: continuous spectrum and mono-energetic lines

$$
\frac{d \Phi_{\gamma}}{d E_{\gamma}}=0.94 \times 10^{-13} \sum_{i} \frac{d N_{\gamma}^{i}}{d E_{\gamma}}\left(\frac{\left\langle\sigma_{i} v\right\rangle}{10^{-29} \mathrm{~cm}^{3} \mathrm{~s}^{-1}}\right)\left(\frac{100 \mathrm{GeV}}{m_{\chi}}\right)^{2} \bar{J}(\Delta \Omega) \Delta \Omega
$$

- Typical sensitivities require $\Phi_{\min } \sim 10^{-10}$ photons $/ \mathrm{cm}^{2} / \mathrm{sec}$
- Plain vanilla NFW profile gives $\bar{J}\left(10^{-5} \mathrm{sr}\right)=1.3 \times 10^{4}$
- Much less for isothermal core-type profiles

Continuous Spectrum from Galactic Center

EGRET Collaboration, Astrophys. J. 481 (1997) 205
Fermi-LAT Collaboration, arXiv: 0907.0294

\Rightarrow Not much constraint on any profile from galactic center

- Profiles here: Einasto, NFW, isothermal (top to bottom)
\Rightarrow More substantial constraints on pure-wino case coming from dwarf galaxies?

Monochromatic Signals

\Rightarrow Monochromatic gamma ray signals a "smoking gun" for dark matter

- Loop-induced diagrams provide annihilation into $\gamma \gamma$ and γZ final states
- Monoenergetic signals with $E_{\gamma \gamma}=m_{\chi}$ and $E_{\gamma Z}=m_{\chi}-M_{Z}^{2} / 4 m_{\chi}$
- Easy to pick out over background, but branching fractions reduce rate by factors of $10^{3}-10^{4}$
- Pure-wino models capable of getting PAMELA correct in trouble!
Fermi-LAT Collaboration, arXiv: 1001.4531

What Can Cause Non-Universalities?

3. Loop Effects

- Gauge coupling automatic when single modulus controls all gauge couplings
- Example: heterotic string models with $f_{a}=S$ (gauge coupling relation...)
- Non-universalities now arise only at the loop level

$$
\mathcal{L} \sim \int \mathrm{d}^{2} \theta f_{a}\left(W^{\alpha} W_{\alpha}\right)_{a} \rightarrow \int \mathrm{~d}^{2} \theta\left(S+\frac{1}{16 \pi^{2}} X_{a}\right)\left(W^{\alpha} W_{\alpha}\right)_{a}
$$

- If $\left\langle F^{X}\right\rangle \sim 16 \pi^{2}\left\langle F^{S}\right\rangle$ non-universalities are $\mathcal{O}(1)$ in gaugino sector

Testing for the Mirage Pattern

\Rightarrow Our goal is to ask how well we can determine α at the LHC using only actual observations

- Most importantly, can we demonstrate $\alpha \neq 0$?
- Want to do this independent of any particular model
- Not going to assume reconstruction any sparticle masses
\Rightarrow Basic idea: use an ensemble of signatures wisely chosen to perform a fit of Monte Carlo to "data"
- We break the problem into a "base model" specified by the parameters

$$
\left\{\begin{array}{c}
\tan \beta, m_{H_{u}}^{2}, m_{H_{d}}^{2} \\
M_{3}, A_{t}, A_{b}, A_{\tau} \\
m_{Q_{1,2}}, m_{U_{1,2}}, m_{D_{1,2}}, m_{L_{1,2}}, m_{E_{1,2}} \\
m_{Q_{3}}, m_{U_{3}}, m_{D_{3}}, m_{L_{3}}, m_{E_{3}}
\end{array}\right\}
$$

and a value of α which determines the three gaugino masses (with overall scale set by M_{3})
\Rightarrow Choose a random "base model" and construct "alpha-line" based off this point

- Each line: $-0.5 \leq \alpha \leq 1.0$ for the parameter α in steps of $\Delta \alpha=0.05$

Signature List C

- Here we allow as much as 30% correlation between any two signatures

	Description	Min Value	Max Value
Counting Signatures			
1	$N_{\ell} \quad[\geq 1$ leptons, ≤ 4 jets]		
2	$N_{\ell^{+} \ell^{-}}\left[M_{\mathrm{inv}}^{\ell^{+} \ell^{-}}=M_{Z} \pm 5 \mathrm{GeV}\right]$		
3	$N_{B} \quad[\geq 2$ B-jets]		
[0 leptons, ≤ 4 jets]			
4	$M_{\text {eff }}^{\text {any }}$	1000 GeV	End
5	$M_{\text {inv }}^{\text {jets }}$	750 GeV	End
6	E_{T}	500 GeV	End
[0 leptons, ≥ 5 jets]			
7	$M_{\text {eff }}^{\text {any }}$	1250 GeV	3500 GeV
8	$r_{\text {jet }}[3$ jets $>200 \mathrm{GeV}$]	0.25	1.0
9	p_{T} (4th Hardest Jet)	125 GeV	End
10	$E_{T} / M_{\text {eff }}^{\text {any }}$	0.0	0.25
[≥ 1 leptons, ≥ 5 jets]			
11	$E_{T} / M_{\text {eff }}^{\text {any }}$	0.0	0.25
12	p_{T} (Hardest Lepton)	150 GeV	End
13	$p_{T}(4$ th Hardest Jet)	125 GeV	End
14	$E_{T}+M_{\text {eff }}^{\text {jets }}$	1250 GeV	End

Signature "List" C

Signature List C

Signature "List" C

- Some signatures designed to detect changes in the softness of decay produces in cascade decays
- Particularly effective is the ratio $r_{\text {jet }} \equiv \frac{p_{T}^{\text {jet } 3}+p_{T}^{\text {eet } 4}}{p_{T}^{\text {ett }}+p_{T}^{\text {eit } 2}}$

