Non-Universal Gaugino Masses, Dark Matter and the LHC

Brent D. Nelson

with B. Altunkaynak, M. Holmes, + University of Michigan/University of Wisconsin

1

- Gaugino Sector of the MSSM (2 Slides)
- Dark Matter Hints (8 Slides)
- High-Energy Theoretical Motivation (2 Slides)
- LHC Phenomenology (4 Slides)

Quick Review

• Gauginos part of vector supermultiplets: $A_a = \{\lambda_a, (A_\mu)_a, D_a\}, a = 1, 2, 3$

Names	spin 1/2	spin 1	$SU(3)_C, SU(2)_L, U(1)_Y$
gluino, gluon	\widetilde{g}	g	(8, 1, 0)
winos, W bosons	\widetilde{W}^{\pm} \widetilde{W}^{0}	$W^{\pm} W^0$	(1, 3, 0)
bino, B boson	\widetilde{B}^0	B^0	(1, 1, 0)

- Supersymmetry breaking independent of EWSB
 Thus in SUSY limit we have massless gauginos up to EWSB effects
- Soft SUSY-breaking gaugino masses: $\mathcal{L}_{soft} \ni -\frac{1}{2}M_a\lambda_a\lambda_a + c.c.$
- Gaugino masses run independently at one loop

$$\frac{dM_a}{dt} = \frac{1}{8\pi^2} \mathbf{b_a} g_a^2 M_a \,, \quad \mathbf{b_a} = -(3C_a - \sum_i C_a^i) \; \Rightarrow \; \{\mathbf{b_1}, \mathbf{b_2}, \mathbf{b_3}\} = \left\{\frac{33}{5}, 1, -3\right\}$$

• Three ratios M_a/g_a^2 therefore constant (up to two loop effects)

$$\frac{M_1}{g_1^2} \simeq \frac{M_2}{g_2^2} \simeq \frac{M_3}{g_3^2} \to M_3 : M_2 : M_1 \simeq 6 : 2 : 1$$
 at EW scale

Gaugino Masses – EM Neutral Sector

- \Rightarrow Can model possibilities via $M_a = m_{1/2} (1 + \delta_a)$ Arkani-Hamed, Delgado, Giudice, NPB 741 (2006) 108
- $\delta_1 = \delta_2 = \delta_3$ produces bino-like LSP: $\widetilde{N}_1 \sim \widetilde{B}$; $\widetilde{N}_2 \sim \widetilde{W}^0$
- $\{\delta_1 = 0, \, \delta_2 < 0\}$ produces wino-like LSP
- $\{\delta_2 > 0, \ \delta_3 < 0\}$, $|\delta_3| < |\delta_2|$ produces Higgsino-like LSP via RGEs + EWSB

$$M_Z^2 = 5.9M_3^2 - 1.8\mu^2 + 0.4m_0^2 - 0.4M_2^2 + \dots$$

Kane, Lykken, BDN, Wang, PLB 551 (2003) 146

Dark Matter

• Assumption: lightest neutralino is stable LSP \Rightarrow dark matter

Goldberg, PRL 50 (1983) 1419

• Prediction: annihilation into photons, positrons, anti-protons, neutrinos

```
Silk & Srednicki, PRL 53 (1984) 624
```

- Photons & neutrinos "point" back to source: high density areas such as galactic center or center of sun/earth
- * Charged particles must be propagated from origin to earth numerically
- * Both depend on the halo profile $\rho_{\chi}(r)$ assumed for the dark matter candidate, but to varying degrees
- Begin with positrons:

Cirelli et al., NPB 800 (2008) 204; 813 (2009) 1

$$\Phi_{\bar{e}}(E) \simeq \frac{\tau_E B_{\bar{e}} c}{8\pi b(E)} \frac{\rho_{\chi}^2(r=R_0)}{m_{\tilde{N}_1}^2} F(E) , \quad b(E) = 1 \,\text{GeV} \left(\frac{E}{1 \,\text{GeV}}\right)^2$$
$$F(E) = \int_E^{M_{\tilde{N}_1}} dE' \sum_k \langle \sigma v \rangle_{\text{halo}}^k \frac{dN_{\bar{e}}^k}{dE'} \cdot \mathcal{I}(E,E')$$

★
$$B_{\bar{e}}$$
 = boost factor, $\tau_E = \tau \times 10^{16} \sec$ is the diffusion time scale and $\mathcal{I}(E, E')$ is the halo function

* For SUSY models, most important final state is usually $k = W^+W^-$

SUSY Fits to Positron Flux Measurements

SUSY Fits to Positron Flux Measurements

Photons versus Positrons

Photons versus Positrons

Direct Detection Experiments: CDMS II

⇒ December 2009 data release for 14 Ge detectors by CDMS-II Collaboration

CDMS II Collaboration, Science 327 (2010) 1620

- Two events in signal region with (revised) background estimate of $0.8 \pm 0.1 \,({
 m stat}) \pm 0.2 \,({
 m sys})$ events
- Implies an interaction cross-section $\sigma_{\chi p}^{SI} \sim 10^{-44} \, \mathrm{cm}^2 = 1 \times 10^{-8} \, \mathrm{pb}$

Fitting to CDMS II

 \Rightarrow Differential recoil rate at direct detection experiments given by

$$\frac{dR}{dE} = \sum_{i} c_i \frac{\rho_{\chi} \sigma_{\chi i}^{\mathrm{SI}} |F_i(q_i)|^2}{2m_{\chi} \mu_{i\chi}^2} \int_{v_{min}}^{\infty} \frac{f(\vec{v}, t)}{v} d^3 v \,,$$

with $F_i(q_i)$ being a nuclear form factor for *i*-th target nucleus

• Calculation of integrated event rate depends on experimental configuration

$$R = \int_{E_{\min}}^{E_{\max}} \frac{dR}{dE} dE; \quad (\text{Germanium}) : 10 \text{ keV} \le E_{\text{recoil}} \le 100 \text{ keV}$$

Altunkaynak, Holmes and BDN, arXiv:0804.2899

Point	A	В	C	D	E
$m_{\chi^0_1}$ (GeV)	138	190	175	112	230
δ_2	0.65	0.62	-0.6	0.82	-0.47
δ_3	-0.35	-0.3	-0.3	-0.35	-0.3
B%	3.0%	70.2%	0.3%	5.4%	40.9%
W%	0.4%	0.4%	95.8%	0.5%	53.0%
H%	96.6%	29.4%	3.9%	94.1%	6.1%
$\sigma_{\chi p}^{ m SI} imes 10^{45}$ (cm ²)	11.9	44.4	41.3	35.3	74.8
$N_{ m Ge}^{\sim}$ (184 kg-days)	0.51	1.36	1.30	1.65	1.90

Holmes and BDN, arXiv:0912.4507

- \Rightarrow Wino-like LSP preferred, but probably not 100% wino
- Pure wino better for PAMELA (no boost factor) but tension with anti-protons and photons without help from halo model and/or diffusion parameters
- Higgsino or Bino component of 5-10% (at least) needed to avoid photon and anti-proton constraints but need $\mathcal{O}(5)$ boost factors to get PAMELA
- If CDMS-II is seeing a signal, will need even more substantial Higgsino component for large enough cross section

All scenarios (probably) require non-thermal relic production mechanisms

High-Scale Theoretical Motivation

What Can Cause Non-Universalities?

In supergravity, gaugino masses have a very simple form:

$$m_{\lambda_a} = \sum_n \frac{g_a^2}{2} \frac{F^n}{M_{\rm PL}} \operatorname{Re}[\partial_n f_a] ; \quad f_a = f_a(Z^n)$$

where f_a are gauge kinetic functions which depend on SM gauge singlets Z^n

⇒ So what are some mechanisms for producing non-universal gaugino masses?

What Can Cause Non-Universalities?

In supergravity, gaugino masses have a very simple form:

$$m_{\lambda_a} = \sum_{n} \frac{g_a^2}{2} \frac{F^n}{M_{\rm PL}} \operatorname{Re}[\partial_n f_a] ; \quad f_a = f_a(Z^n)$$

where f_a are gauge kinetic functions which depend on SM gauge singlets Z^n

 \Rightarrow So what are some mechanisms for producing non-universal gaugino masses?

- 1. Grand Unified Theories
- 2. Independent Gauge Kinetic Functions
- 3. Loop Effects

What Can Cause Non-Universalities?

In supergravity, gaugino masses have a very simple form:

$$m_{\lambda_a} = \sum_n \frac{g_a^2}{2} \frac{F^n}{M_{\rm PL}} \operatorname{Re}[\partial_n f_a] ; \quad f_a = f_a(Z^n)$$

where f_a are gauge kinetic functions which depend on SM gauge singlets Z^n

⇒ So what are some mechanisms for producing non-universal gaugino masses?

- 1. Grand Unified Theories
- 2. Independent Gauge Kinetic Functions
- 3. Loop Effects

 \Rightarrow An example of the last item is the mirage pattern of gaugino masses

 $M_1: M_2: M_3 \simeq (1+0.66\alpha): (2+0.2\alpha): (6-1.8\alpha)$

Choi & Nilles, JHEP 0704 (2007) 006

Manifestations of the Mirage Pattern

The mirage pattern (competition between tree and anomaly-mediated contributions to soft masses) appears in a number of phenomenologically successful string constructions:

• Kähler stabilized heterotic string models

Binetruy, Gaillard, Wu, NPB 481 (1996) 109 Gaillard and BDN, IJMP A22 (2007) 1451

• Type-IIB flux compactifications with anti- D_3 branes

Kachru, Kallosh, Linde, Trivedi, PRD 68 (2003) 046005 Choi, Falkowski, Nilles, Olechowski, NPB 718 (2005) 113

• M-theory compactified on fluxless G_2 manifolds

Acharya, Kane, et al., PRL 97(2006) 191601 PRD 76 (2007) 126010 PRD 78 (2008) 065038

 \Rightarrow Common features:

- Single modulus stabilized by gaugino condensation
- Kähler potential for this modulus substantially altered from tree-level value
- Tuning of cosmological constant ($\langle V \rangle$) to zero by adjusting parameters

LHC Implications

- For each point studied 100,000 events generated with PYTHIA + PGS4 with the level 1 trigger only
 - \Rightarrow Typically this is about 5 fb⁻¹ of signal
- A single SM sample was generated, including 5 fb⁻¹ of top, bottom, dijets and gauge boson production (both single and double production)
 - This background sample was suitably weighted to be included with each of our "signal" samples
- Initial object-level cuts to keep an object in the event record

Object	Minimum p_T	Minimum $ \eta $
Photon	20 GeV	2.0
Electron	20 GeV	2.0
Muon	20 GeV	2.0
Tau	20 GeV	2.4
Jet	50 GeV	3.0

- \Rightarrow After object-level cuts we impose event-level cuts an example:
- Transverse sphericity $S_T > 0.1$
- $H_T = E_T + \sum_{\text{Jets}} p_T^{\text{jet}} > 600 \text{ GeV}$ (400 GeV for events with 2 or more leptons)

Mass	Mixed LSP	Pure Wino LSP
$m_{\widetilde{N}_1}$	198.9	195.2
$m_{\widetilde{N}_2}$	217.0	357.0
$m_{\widetilde{N}_3}^2$	429.9	1025
$m_{\widetilde{N}_A}$	451.3	1029
$m_{\widetilde{C}_1}^{4}$	208.8	195.5
$m_{\widetilde{C}_2}$	448.6	1036
$m_{\tilde{t}_1}$	648.5	1516
$m_{\tilde{t}_2}$	866.8	1749
$m_{\tilde{b}_1}$	841.4	1729
$m_{\tilde{b}_2}$	970.2	1902
$m_{ ilde{ au}_1}$	817.7	1011
$m_{\tilde{ au}_2}$	822.8	1041
$m_{ ilde{g}}$	707.1	1929

Feldman, Liu, Nath, BDN, reference

	Mixed LSP		Pure Wino LSP	
Signature	Events	S/\sqrt{B}	Events	S/\sqrt{B}
Multijets	8766	183.74	50	1.05
Lepton + jets	2450	32.25	26	0.34
OS dileptons + jets	110	6.39	4	0.23
SS dileptons + jets	60	11.77	0	NA
Trileptons + jets	14	2.47	0	NA

- Big impact of gluino mass in number of multijet events
- Small mass gaps significantly reduce number of leptonic events

Benchmark Models II: CDMS-II Examples

Point	С	D	E
δ_2	-0.6	0.82	-0.47
δ_3	-0.3	-0.35	-0.3
B%	0.3%	5.4%	40.9%
W%	95.8%	0.5%	53.0%
H%	3.9%	94.1%	6.1%
$m_{\widetilde{N}_1}$	175	112	230
$m_{\widetilde{N}_2}$	235	130	239
$m_{\widetilde{N}_3}^2$	505	252	504
$m_{\widetilde{N}_A}$	513	846	515
$m_{\widetilde{C}_1}$	175	123	234
$m_{\widetilde{C}_2}$	514	846	515
$m_{\tilde{q}}$	952	890	951
$m_{\tilde{t}_1}$	719	544	709
$m_{\tilde{t}_2}$	862	964	865
$m_{\tilde{b}_1}^2$	809	766	812
$m_{\tilde{b}_2}$	874	943	871
$m_{ ilde{ au}_1}$	344	338	352
$m_{ ilde{ au}_2}$	414	752	424
m_h^2	113	114	113
$\sigma_{ m SUSY}^{ m 7TeV}$ (pb)	1.2	2.7	0.4
$\sigma_{ m SUSY}^{ m 10TeV}$ (pb)	2.5	5.1	1.3
$\sigma_{ m SUSY}^{ m m m m m m m m m m m m m $	5.7	10.0	3.7

Holmes and BDN, arXiv:0912.4507

- All models can produce signals at CDMS II
 C & E can fit PAMELA data as well
- Signal simulated: 1 fb⁻¹ at $\sqrt{s} = 14 \,\mathrm{TeV}$
- Again, healthy multijets but disappearance of leptonic events

Point	С	D	E		
Multijets	402	436	298		
1ℓ + jets	202	310	111		
OS 2ℓ + jets	12	45	7		
SS 2ℓ + jets	6	16	3		
3ℓ + jets	4	6	1		
Significance S/\sqrt{B}					
Point	С	D	E		
Multijets	26.9	29.1	19.9		
1ℓ + jets	8.2	12.5	4.5		
OS 2ℓ + jets	2.0	7.4	1.2		
SS 2ℓ + jets	2.3	6.0	1.1		
3ℓ + jets	1.6	2.5	0.4		

Numbers of Events

General PAMELA-consistent Models

 \Rightarrow General rule: Discovery of DM-motivated models needs a light gluino

Feldman, Kane, Lu, BDN, arXiv: 1002.2430

- High wino-content (for PAMELA) implies small mass gap between $\widetilde{C}_1/\widetilde{N}_2$ and LSP
- Result: major reduction in expected leptonic SUSY signatures
- Increasing Higgsino content to match CDMS (and photon data) requires a light gluino
- Result: multijet signals may be our only handle

⇒ We will need to learn how to do more with less! Must look for new signatures targeted to non-universalities in gaugino sector

- Dark matter hints strongly disfavor pure Bino LSP (i.e. mSUGRA)
- PAMELA needs wino predominance; CDMS/photons want strong Higgsino admixture
- Such models find a natural home in many (all?) semi-realistic string constructions
- Likely that mass gaps between $\widetilde{C}_1/\widetilde{N}_2$ and LSP small, so leptonic signatures a bust
- Will need to learn to do more with jet-based signatures and hope the gluino is lighter than in mSUGRA models

- Dark matter hints strongly disfavor pure Bino LSP (i.e. mSUGRA)
- PAMELA needs wino predominance; CDMS/photons want strong Higgsino admixture
- Such models find a natural home in many (all?) semi-realistic string constructions
- Likely that mass gaps between $\widetilde{C}_1/\widetilde{N}_2$ and LSP small, so leptonic signatures a bust
- Will need to learn to do more with jet-based signatures and hope the gluino is lighter than in mSUGRA models
- ⇒ Gaugino sector is truly a window on the high-energy world: we may be on the verge of revolutionary discoveries!

Back-Up Slides

What About Anti-protons?

⇒ Greater tension for pure wino LSP; OK for NFW "min" and "med" halo profiles

- \Rightarrow Halo profiles especially important in this situation
- Annihilation rates scale like the square of the density
- We observe the entire line-of-sight to the galactic center therefore need to know the halo profile $\rho_{\chi}(r)$
- Many possible profiles suggested in literature; each can be summarized by one parameter $\overline{J}(\Delta\Omega)$

$$\overline{J}(\Delta\Omega) \equiv \frac{1}{\Delta\Omega} \int_{\Delta\Omega} d\Omega' J(\psi'); \quad J(\psi) = \frac{1}{8.5 \,\mathrm{kpc}} \int_{\mathrm{l.\,o.\,s.}} ds(\psi) \left(\frac{\rho_{\chi}(r)}{0.3 \,\mathrm{GeV\,/cm^3}}\right)^2$$

⇒ Two types of signal: continuous spectrum and mono-energetic lines

$$\frac{d\Phi_{\gamma}}{dE_{\gamma}} = 0.94 \times 10^{-13} \sum_{i} \frac{dN_{\gamma}^{i}}{dE_{\gamma}} \left(\frac{\langle \sigma_{i}v \rangle}{10^{-29} \,\mathrm{cm}^{3} \,\mathrm{s}^{-1}}\right) \left(\frac{100 \,\mathrm{GeV}}{m_{\chi}}\right)^{2} \overline{J}(\Delta\Omega) \Delta\Omega$$

- Typical sensitivities require $\Phi_{\rm min} \sim 10^{-10}$ photons/cm²/sec
- Plain vanilla NFW profile gives $\overline{J}(10^{-5} \, {
 m sr}) = 1.3 imes 10^4$
- Much less for isothermal core-type profiles

EGRET Collaboration, Astrophys. J. 481 (1997) 205 Fermi-LAT Collaboration, arXiv: 0907.0294

- ⇒ Not much constraint on any profile from galactic center
- Profiles here: Einasto, NFW, isothermal (top to bottom)
- ⇒ More substantial constraints on pure-wino case coming from dwarf galaxies?

Monochromatic Signals

⇒ Monochromatic gamma ray signals a "smoking gun" for dark matter

- Loop-induced diagrams provide annihilation into $\gamma\gamma$ and γZ final states
- Monoenergetic signals with $E_{\gamma\gamma} = m_{\chi}$ and $E_{\gamma Z} = m_{\chi} M_Z^2/4m_{\chi}$
- Easy to pick out over background, but branching fractions reduce rate by factors of 10³ - 10⁴
- Pure-wino models capable of getting PAMELA correct in trouble!

Fermi-LAT Collaboration, arXiv: 1001.4531

- 3. Loop Effects
- Gauge coupling automatic when single modulus controls all gauge couplings
- Example: heterotic string models with $f_a = S$ (gauge coupling relation...)
- Non-universalities now arise only at the loop level

$$\mathcal{L} \sim \int \mathsf{d}^2 \theta f_a \left(W^\alpha W_\alpha \right)_a \to \int \mathsf{d}^2 \theta \left(\frac{S}{16\pi^2} X_a \right) \left(W^\alpha W_\alpha \right)_a$$

• If $\left< F^X \right> \sim 16\pi^2 \left< F^S \right>$ non-universalities are $\mathcal{O}(1)$ in gaugino sector

- \Rightarrow Our goal is to ask how well we can determine α at the LHC using only **actual observations**
- Most importantly, can we demonstrate $\alpha \neq 0$?
- Want to do this independent of any particular model
- Not going to assume reconstruction any sparticle masses
- ⇒ Basic idea: use an ensemble of signatures wisely chosen to perform a fit of Monte Carlo to "data"
- We break the problem into a "base model" specified by the parameters

$$\left\{ \begin{array}{c} \tan\beta, \ m_{H_u}^2, \ m_{H_d}^2 \\ M_3, \ A_t, \ A_b, \ A_\tau \\ m_{Q_{1,2}}, \ m_{U_{1,2}}, \ m_{D_{1,2}}, \ m_{L_{1,2}}, \ m_{E_{1,2}} \\ m_{Q_3}, \ m_{U_3}, \ m_{D_3}, \ m_{L_3}, \ m_{E_3} \end{array} \right)$$

and a value of α which determines the three gaugino masses (with overall scale set by M_3)

- ⇒ Choose a random "base model" and construct "alpha-line" based off this point
- Each line: $-0.5 \le \alpha \le 1.0$ for the parameter α in steps of $\Delta \alpha = 0.05$

• Here we allow as much as 30% correlation between any two signatures

	Description	Min Value	Max Value			
	Counting Signatures					
1	N_{ℓ} [≥ 1 leptons, ≤ 4 jets]					
2	$N_{\ell^+\ell^-} [M_{\rm inv}^{\ell^+\ell^-} = M_Z \pm 5 { m GeV}]$					
3	$N_B [\geq 2 \text{ B-jets}]$					
	[0 leptons, ≤ 4 je	ts]				
4	$M_{ m eff}^{ m any}$	1000 GeV	End			
5	$M_{ m inv}^{ m jets}$	750 GeV	End			
6	$\not\!$	500 GeV	End			
	[0 leptons, ≥ 5 je	ts]				
7	$M_{ m eff}^{ m any}$	1250 GeV	3500 GeV			
8	$r_{ m jet}$ [3 jets $>$ 200 GeV]	0.25	1.0			
9	p_T (4th Hardest Jet)	125 GeV	End			
10	$E_T/M_{ m eff}^{ m any}$	0.0	0.25			
[≥ 1 leptons, ≥ 5 jets]						
11	$E_T/M_{ m eff}^{ m any}$	0.0	0.25			
12	p_T (Hardest Lepton)	150 GeV	End			
13	p_T (4th Hardest Jet)	125 GeV	End			
14	$ ot\!$	1250 GeV	End			

Signature "List" C

Signature List C

	Description	Min Value	Max Value		
	Counting Signatures				
1	N_{ℓ} [≥ 1 leptons, ≤ 4 jets]				
2	$N_{\ell^{+}\ell^{-}} [M_{\rm inv}^{\ell^{+}\ell^{-}} = M_Z \pm 5 {\rm GeV}]$				
3	N_B [≥ 2 B-jets]				
	[0 leptons, ≤ 4 jets	s]			
4	$M_{ m eff}^{ m any}$	1000 GeV	End		
5	$M_{ m inv}^{ m jets}$	750 GeV	End		
6	E_T	500 GeV	End		
	[0 leptons, ≥ 5 jets	s]			
7	$M_{ m eff}^{ m any}$	1250 GeV	3500 GeV		
8	$r_{ m jet}$ [3 jets $>$ 200 GeV]	0.25	1.0		
9	$\dot{p_T}$ (4th Hardest Jet)	125 GeV	End		
10	$E_T/M_{ m eff}^{ m any}$	0.0	0.25		
[≥ 1 leptons, ≥ 5 jets]					
11	$E_T/M_{\rm eff}^{\rm any}$	0.0	0.25		
12	p_T (Hardest Lepton)	150 GeV	End		
13	p_T (4th Hardest Jet)	125 GeV	End		
14	$ ot\!$	1250 GeV	End		

Signature "List" C

- Some signatures designed to detect changes in the softness of decay produces in cascade decays
- Particularly effective is the ratio $r_{\rm jet}\equiv rac{p_T^{\rm jet3}+p_T^{\rm jet4}}{p_T^{\rm jet1}+p_T^{\rm jet2}}$