Spin Measurements in Events with Missing Energy at the LHC

> *Zhenyu Han* Harvard University

With Hsin-Chia Cheng, Ian-Woo Kim, Lian-Tao Wang (to appear)

05/10/2010 @ Madison

Outline

Motivation

- Spin determination important but difficult in events with missing energy
- Existing methods have their limitations
- Obtaining spin correlation from event reconstruction
 - Single-chain case vs double-chain case
 - Under-constrained/solvable/over-constrained system
- Conclusion and outlook

Models with missing energy signature

- SUSY (R-parity), UED (KK-parity), Little Higgs (T-parity)... Example process: $\tilde{q} \to q \tilde{\chi}_2^0 \to q \tilde{\ell} \ell \to q \ell \bar{\ell} \tilde{\chi}_1^0$
- Hard to reconstruct the kinematics due to two (or more) missing particles.

6D UED (Burdman, Dobrescu, Ponton; Dobrescu, Kong, Mahbubani,), B_H^(1,0) : scalar "KK-photon" Similar process in PQ-UED (Csaki, Heinonen, Hubisz, Shirman)

What's the theory?

- Mass determination
- Spin determination
 - Cross-sections depend on spin
 - Kinematics: pT
 - Invariant mass method
 - Event reconstruction method
 - Easier for e+e- machine (Buckley, Murayama, Klemm & Rentala)
 - Focus on LHC in this talk

Angular distribution of decay products

- Non-uniform angular distribution of decay product:
 - Polarized mother particle.
 - Helicity basis: reference direction is its own momentum
 - For fermions: chiral coupling for the decay.
- The angular distribution is a polynomial of $\cos \theta$ of order 2*Spin. θ : defined in the rest frame of mother particle

Equivalent to invariant mass distribution of quark-lepton.

•Barr, 2004 •Smillie, Webber , 2005, 2006

•Kilic, Wang, Yavin, 2006, 2007

•Burns, Kong, Matchev, Park, 2008

•Ehrenfeld, Freitas, Landwehr, Wyler, 2009

Limitation of inv. mass methods

- The invariant mass distribution of two adjacent visible particles measures the spin of the particle in between.
- Can we measure the spin of the first particle in the decay chain?
 - It needs to be polarized
 - Need to reconstruct its momentum

Chargino/neutralino production

- Similar for KK-Z/KK-W in UED
- Neutrlino 2 is polarized (in the lab frame)
- Need to reconstruct the momentum

 $\tilde{\chi}_2^0 \to \ell_R \tilde{\ell}_R$

Reconstruct the missing particle's momentum --single decay chain case

- Assuming masses are known.
- 4 unknowns: missing particle 4-momentum—need four equations.

$$p_{1}^{2} = M_{N}^{2}$$

$$(p_{1} + p_{2})^{2} = M_{X}^{2}$$

$$(p_{1} + p_{2} + p_{3})^{2} = M_{Y}^{2}$$

$$(p_{1} + p_{2} + p_{3} + p_{4})^{2} = M_{Z}^{2}$$

$$4 \qquad 3 \qquad 2$$

$$Z \qquad Y \qquad X \qquad N \qquad 1$$

Chargino/neutralino in gauge mediation

• 2 leptons not enough for reconstruction. Extra photon in gauge mediation. Similar for PQ/6D-UED

Reconstructed distributions

Subtracted from phase space distributions

Smeared distribution

General counting of the constraints

- One chain case: 4 unknowns, *i.e.*, 4-momentum of the missing particle
 - 4 on-shell particles, 3 visible particles: solvable
 - More than 4 on-shell particles: over-constrained
- Two chain case: 8 unknowns
 - 2 extra constrains from measured missing transverse momentum
 - 6 on-shell particles needed to solve, more than 6: overconstrained.

• f_i = 0 cannot be all satisfied (10 equations, 8 unknowns).

Likelihood fit

• A simplified version:

$$\chi^2 = \sum_{i} \left(\frac{f_i}{\delta f_i}\right)^2, \quad \delta f_i^2 = \sum_{x=p_{vis},m} \left(\frac{\partial f_i}{\partial x}\delta x\right)^2$$

- Find ${\sf p}_1$, ${\sf p}_2$ that minimize χ^2
- We used a more complicated formalism where the correlations among the equations/measurements are taken into account.

Production angle depends on spin

Spin correlation between two chains

• Jet-jet opening angle (Boost the jets to their respective mother particle's rest frame, look at the angle between them.)

Conclusion

- It is often possible to reconstruct the missing particles' momenta if all masses are known—spin is determined in the same way as when all particles are visible.
- We obtain spin information that is only available after event reconstruction.
- Depending on whether the system is solvable or overconstrained, and whether we want to examine a single chain or both chains, apply different methods.