Spin Measurements in Events with Missing Energy at the LHC

Zhenyu Han Harvard University

With Hsin-Chia Cheng, Ian-Woo Kim, Lian-Tao Wang (to appear)

05/10/2010 @ Madison

Outline

- Motivation
- Spin determination important but difficult in events with missing energy
- Existing methods have their limitations
- Obtaining spin correlation from event reconstruction
- Single-chain case vs double-chain case
- Under-constrained/solvable/over-constrained system
- Conclusion and outlook

Models with missing energy signature

- SUSY (R-parity), UED (KK-parity), Little Higgs (T-parity)... Example process: $\widetilde{q} \rightarrow q \widetilde{\chi}_{2}^{0} \rightarrow q \widetilde{\ell \ell} \rightarrow q \ell \bar{\ell} \widetilde{\chi}_{1}^{0}$
- Hard to reconstruct the kinematics due to two (or more) missing particles.

Another example

Gauge mediation

6D UED (Burdman, Dobrescu, Ponton; Dobrescu, Kong, Mahbubani,), $\mathrm{BH}^{(1,0)}$: scalar "KK-photon"
Similar process in PQ-UED (Csaki, Heinonen, Hubisz, Shirman)

What's the theory?

- Mass determination
- Spin determination
- Cross-sections depend on spin
- Kinematics: PT
- Invariant mass method
- Event reconstruction method
- Easier for e+e- machine (Buckley, Murayama, Klemm \& Rentala)
- Focus on LHC in this talk

Angular distribution of decay products

- Non-uniform angular distribution of decay product:
- Polarized mother particle.
- Helicity basis: reference direction is its own momentum
- For fermions: chiral coupling for the decay.
- The angular distribution is a polynomial of $\cos \theta$ of order $2 *$ Spin. θ : defined in the rest frame of mother particle

An example

$$
\tilde{q} \rightarrow q_{L} \tilde{\chi}_{2}^{0} \rightarrow q_{L} \ell_{R} \tilde{\ell}_{R}
$$

Equivalent to invariant mass distribution of quark-lepton.
-Barr, 2004
-Smillie, Webber , 2005, 2006
-Kilic, Wang, Yavin, 2006, 2007
-Burns, Kong, Matchev, Park, 2008
-Ehrenfeld, Freitas, Landwehr, Wyler, 2009

Limitation of inv. mass methods

- The invariant mass distribution of two adjacent visible particles measures the spin of the particle in between.
- Can we measure the spin of the first particle in the decay chain?
- It needs to be polarized
- Need to reconstruct its momentum

Chargino/neutralino production

- Similar for KK-Z/KK-W in UED
- Neutrlino 2 is polarized (in the lab frame)
- Need to reconstruct the momentum

$$
\tilde{\chi}_{2}^{0} \rightarrow \ell_{R} \tilde{\ell}_{R}
$$

Reconstruct the missing particle's momentum --single decay chain case

- Assuming masses are known.
- 4 unknowns: missing particle 4-momentum—need four equations.

$$
\begin{aligned}
& p_{1}^{2}=M_{N} \\
& \left(p_{1}+p_{2}\right)^{2}=M X^{2} \\
& \left(p_{1}+p_{2}+p_{3}\right)^{2}=M Y^{2} \\
& \left(p_{1}+p_{2}+p_{3}+p_{4}\right)^{2}=M_{Z}^{2} \\
& 4 \\
& \mathrm{Z} \\
& \mathrm{Y} \\
& \mathrm{Y} \\
& \hline
\end{aligned}
$$

Chargino/neutralino in gauge mediation

- 2 leptons not enough for reconstruction. Extra photon in gauge mediation. Similar for PQ/6D-UED

Reconstructed distributions

Distributions contaminated by wrong solutions, wrong combinations.

Subtracted from phase space distributions

Smeared distribution

Experimental resolutions included

General counting of the constraints

- One chain case: 4 unknowns, i.e., 4-momentum of the missing particle
- 4 on-shell particles, 3 visible particles: solvable
- More than 4 on-shell particles: over-constrained
- Two chain case: 8 unknowns
- 2 extra constrains from measured missing transverse momentum
- 6 on-shell particles needed to solve, more than 6: overconstrained.

Over-constrained system

$$
\begin{aligned}
& f_{1}=p_{1}^{2}-m_{N}^{2} \\
& f_{2}=\left(p_{1}+p_{3}\right)^{2}-m_{X}^{2} \\
& f_{9}=p_{1}^{x}+p_{2}^{x}-p_{\text {miss }}^{x} \\
& f_{10}=p_{1}^{y}+p_{2}^{y}-p_{\text {miss }}^{y}
\end{aligned}
$$

- $\mathrm{f}_{\mathrm{i}}=0$ cannot be all satisfied (10 equations, 8 unknowns).

Likelihood fit

- A simplified version:

$$
\chi^{2}=\sum_{i}\left(\frac{f_{i}}{\delta f_{i}}\right)^{2}, \delta f_{i}^{2}=\sum_{x=p_{v i s}, m}\left(\frac{\partial f_{i}}{\partial x} \delta x\right)^{2}
$$

- Find $\mathrm{p}_{1}, \mathrm{p} 2$ that minimize χ^{2}
- We used a more complicated formalism where the correlations among the equations/measurements are taken into account.

Production angle depends on spin

MC

Reconstructed

Spin correlation between two chains

- Jet-jet opening angle (Boost the jets to their respective mother particle's rest frame, look at the angle between them.)

MC

Reconstructed

Conclusion

- It is often possible to reconstruct the missing particles' momenta if all masses are known-spin is determined in the same way as when all particles are visible.
- We obtain spin information that is only available after event reconstruction.
- Depending on whether the system is solvable or overconstrained, and whether we want to examine a single chain or both chains, apply different methods.

