Early Performance of the ATLAS Experiment

Detector subsystems and their status
Performance of object reconstructions
First physics result and what to expect

Jianming Qian University of Michigan

On behalf of the ATLAS Collaboration

ATLAS Collaboration

Detector: A Toroidal LHC ApparatuS

- 7000 tons, 25m high, 46m long and 100 million electronic channels

- Collaboration:
 - ~2900 collaborators;
 - ~1000 students;
 - 173 institutions;
 - 37 countries

20+ years of worldwide collaborative effort

First Beam & Collision Candidate

Pheno 2010 Symposium, Madison, Wisconsin, May 10-12, 2010

Jianming Qian (University of Michigan) 3

Trigger & DAQ System

• Three trigger levels:

- Level 1: 40MHz \rightarrow 75 KHz; Level 2: \rightarrow 2 KHz; Event Filter: \rightarrow 200 Hz

- DAQ output:
 - up to 300 Mb/s with 1.5 Mb/event

Triggers for the initial running: beam pickups & trigger scintillators We are nevertheless writing at 200 Hz !

BPTX: Beam pickup timing device, ±175m from the interaction point, (The current information is also used for luminosity calculation)

MBTS: Minimum Bias Trigger Scintillators
Mounted on LAr endcaps

Run Timelines

- Nov. 20, 2009: Single beam splash;
- Nov. 23, 2009: First collisions observed at 900 GeV;
- Dec. 6, 2009: First collisions with stable beams \Rightarrow full detector on;

1600

- Dec. 8, 2009: First collisions at 2.36 TeV;
- Mar. 30, 2010: First collisions at 7 TeV;
- Apr. 1, 2010: First W candidate observed; ...
- Peak luminosity 1.2×10²⁸ cm⁻² s⁻¹
- Integrated luminosities* delivered: 1.13 nb⁻¹ recorded: 1.09 nb⁻¹ \Rightarrow 96.5% DAQ efficiency !
- ~ 30% luminosity scale uncertainty expect significant reduction soon

ATLAS Online Luminosity $\sqrt{s} = 7 \text{ TeV}$

(* Have already doubled integrated luminosities this weekend...)

Online Performance

March 30, 2010: 1st fill at 7 TeV Recorded 97.2% of the delivered luminosity !

Current trigger configuration

- primary: BPTX + MBTS
- pass-through for many triggers;
- gradually deploy other triggers

Efficiency of the level-1 lowest jet E_T trigger

- reasonable sharp turn-on;
- plateau at 20 GeV;
- well modeled by MC

Tracking System

Pixel Detector

- 3 barrel layers, 2x3 end-cap discs;
- σ(rφ)~ 10 μm, σ(z)~115 μm;
- $|\eta|$ <2.5, 80 million channels
- Semiconductor Tracker (SCT)
 - 4 barrel layers, 2x9 end-cap discs; 21m<
 - stereo view;
 - σ(rφ)~17 μm, σ(z)~580 μm;
 - $|\eta|$ <2.5, 6.3 million channels;
- Transition Radiation Tracker (TRT)
 - dual purpose: tracking + e/π separation;
 - 73 barrel straw layers and 2x160 end-cap radial layers (Xe as active gas);
 - $\sigma(\textbf{r}\phi)~130~\mu\text{m}$, 32 hits/track on average;
 - |η|<**2.0, 350k channels**

The entire inner detectors (ID) is inside a 2T solenoidal field

 $\sigma(p_{T})/p_{T} \sim 3.4 \times 10^{-4} p_{T} (GeV) \oplus 0.015$ $\sigma(d_{0}) \sim \frac{140}{p_{T} (GeV)} \oplus 10 \ \mu m$

Tracking Performance

Hits on tracks for one of the first stable beam runs

Pixel Performance

• Cluster size

Reasonably modeled for those on tracks

- Resolution close to ideal simulation Collision data allows to align regions inaccessible with cosmic rays
- dE/dx from analog readout Charge particle separation

Inner Detector Performance

Silicon Strip Tracker

- geometry and material well simulated
- excellent tracking efficiency

Transition Radiation Tracker - provide transition radiation information for e/π separation - early performance as expected

Pheno 2010 Symposium, Madison, Wisconsin, May 10-12, 2010

Jianming Qian (University of Michigan) 10

Vertex Reconstruction

Long-lived Particles

Seen expected resonances (at the right place!)

$$K_{S}^{0} \rightarrow \pi^{+}\pi^{-}$$

 $\Lambda \rightarrow p\pi^{-}$

 $D^* \rightarrow D^0 \pi^+ \rightarrow (K^- \pi^+) \pi^+$

Conversion Reconstruction

Calorimetry

Calorimeter Performance

Neutral Particles

Reconstructed both $\pi^0 \rightarrow \gamma \gamma$ and $\eta \rightarrow \gamma \gamma$ **Both the mass and the width are well described by MC**

Data : $m_{\pi^0} = 134.0 \pm 0.8 \text{(stat)} \text{ MeV}, \sigma = 24.0 \text{ MeV}$

MC: $m_{\pi^0} = 132.9 \pm 0.2 \text{(stat)}$ MeV, $\sigma = 25.2$ MeV

Useful for low energy electromagnetic calibration

Jianming Qian (University of Michigan) 16

W→ev Candidate

Jets Reconstruction

Jet reconstruction with anti-K_T algorithm with R=0.6;

Not many high pT jets yet, but low energy pT spectrum is well produced by Monte Carlo

Low pT tracks absorbed by the material in the inner detector

- no tracks within $\Delta R < 0.4$;
- 0.5 < pT < 10 GeV
- **|η|<0.8**

Test beam tuned Monte Carlo reproduces the data well

Dijet Candidate

MissingEt Performance

MissingEt is a key to

- SM physics (W, ttbar, ...);
- Higgs and SUSY searches

MissingEt resolution

- good agreement between 900 GeV and 2.36 TeV;
- well modeled by minimum bias Monte Carlo events

MissingEt distribution

- again well modeled;
- no significant tail

Muon Spectrometer

Independent muon measurement with η coverage up to 2.7

- 8 barrel toriods : B ~ 0.5 T;
- 2 endcap toriods: B ~ 1 T;

with standalone resolution:

$$\frac{\sigma_{p_T}}{p_T} \approx 10\%$$
 at $p_T = 1 \text{ TeV}$

Tracking detector:

- Monitored drift tubes (MDT), |η|<2.7;
- Cathode strip chambers (CSC), 2.0< |η|<2.7;
- 385k total channels

Trigger detector:

- Resistive plate chambers (RPC), |η|<1.05;
- Thin gap chambers (TGC), 1.05<|η|<2.4;
- 691k total channels

Barrel:

~ 700 MDTs , ~ 600 RPCs Endcaps: ~ 400 MDTs, 32 CSCs, ~ 3600 TGCs

Pheno 2010 Symposium, Madison, Wisconsin, May 10-12, 2010

Jianming Qian (University of Michigan) 21

$W \rightarrow \mu \nu$ Candidate

$J/\psi \rightarrow \mu\mu$ Observation

Two oppositely charged muons with E>3 GeV

Mass: 3.06±0.02 GeV, Resolution: 0.08±0.02 GeV Number of signal events: 49±12, Number of background events 28±4

First Physics Paper

Charged-particle multiplicities in pp interactions at √s=900 GeV measured with the ATLAS detector at the LHC arXiv:1003.3124, CERN-PH-EP-2010-004, Phys. Lett. B 688, 21 (2010)

The measurements are (5-15)% higher than various predictions in the central region

Minimum Bias Events at 7 TeV

- The analysis of the 7 TeV data shows a similar data-MC difference as the published 900 GeV analysis;
- Significant increase in charge multiplicity from 900 GeV to 7 TeV, the rise is not well modeled by Pythia MC

Roadmap for 2010-2011

• Continue the validation of the detector and physics object performance

- alignment with high pT tracks;
- mapping detector material;
- establish energy/momentum scales;
- Z→II as standard candles for electron/muon ID studies;
- W \rightarrow Iv for lepton and missingEt studies;
- ttbar→l(l)+jets for studying b-jet tagging; ...

• Extensive studies of expected standard model physics

- cross section measurements
- (sub percent level statistical precisions for W and Z cross sections);
- kinematical distributions;

• Searches for new physics

- Dilepton and dijet resonances;
- SM Higgs boson: a 3-4 σ significance possible for M_H=160-170 GeV;
- Supersymmetry: >5 σ for squarks/gluinos with mass up to 500 GeV

For almost all searches, expected ATLAS sensitivities will exceed those of the Tevatron

Summary

• LHC is running and ATLAS is taking data!

- exciting time for the field in general, and those working on LHC in particular;
- lifetime experience to witness the startup
- ATLAS experiment is running smoothly from data taking to physics analyses
 - remarkable good performance at this early stage;
 - excellent MC descriptions of detector geometry and material;
 - ready for the extended 2010-2011 running; ...
- Prospects gradually give way to results
 - first physics paper published, more in the pipeline;
 - expect to competitive with the Tevatron in 2010 in some areas;
 - exceed Tevatron sensitivities in most of searches in 2011

Electrons Identification

Pheno 2010 Symposium, Madison, Wisconsin, May 10-12, 2010

Jianming Qian (University of Michigan) 29

Muon Performance

Not enough muons from collision data, but lots from cosmics

 Momentum difference between MS and ID reasonably reproduce the energy measured in the calorimeter ⇒ track momentum scales are understood

- The muon spectrometer and the inner detector are reasonably aligned;
- MC reproduces cosmic ray data well

Material in the Tracker

Beyond Known Physics

Combination of 0j and 2j, H to WW to II

Supersymmetry searches:

- significant discovery reaches for squarks/gluinos;
- expect >5 σ significance at 500 GeV

For almost all searches, expected ATLAS sensitivities will exceed those of the Tevatron

2010-2011 Run: 1 fb⁻¹ at 7 TeV

Higgs searches:

A 3-4 σ significance possible in the most favorable mass range 160-170 GeV from H \rightarrow WW* \rightarrow Ilvv alone

