A Novel SM Higgs search channel at the LHC

Arjun Menon Illinois Institute of Technology

Based on:

A.M. and Zack Sullivan arXiv:0105.XXXX

May 10th, 2010

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● ● ● ●

Higgs Production and Branching Ratios

Gluon Fusion is the dominant production mechanism

• For $m_h \ge 140 \text{ GeV}$, $h \rightarrow W^+ W^-$ is the dominant decay mode.

(日) (圖) (目) (目) (日) (目)

$h \rightarrow WW$ in the leptonic mode

- Projected 5 σ significance with a luminosity of 4 5 fb⁻¹ for $m_h = 160$ GeV.
- However uncertainties in heavy flavor background. See Zack's talk.

• V - A structure of the W couplings imply spin-correlations between between leptons.

What about the semi-leptonic channel?

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$h \rightarrow WW$ in the semi-leptonic mode

• Large cross-section, but also larger background \Rightarrow 3 σ significance with 30 fb⁻¹ luminosity at the Tevatron. Han and Zhang 1998

• For the $h \rightarrow jjl\nu$ mode angular variables θ_l^0 , φ_l and θ_j^0 have been found. Dobrescue and Lykken 2009

- Main backgrounds to this process Wjj, tt, WZ and WW.
- Largest background is due to Wjj.

Can we make it competitive with the leptonic channel?

A way forward: Charm Tagging

- Advantages of charm tagging:
- 1. Reduces the Wjj background substantially.
- 2. Can use many more spin correlations than are present in the leptonic channels.
- 3. Can reconstruct the Higgs Mass.

• Using a heavy flavor tagging efficiency $\sim 60 - 70\%$ in the relevant kinematic region of $E_T^c = 30 - 40$ GeV.

Signal and Backgrounds

Signal: 2 or 3 jets, 1 tagged jet, 1 lepton + MET

 $Wcj/Wc\bar{c}$: Dominant background and scales with charm tagging efficiency.

Wjj: Next largest background, is sub-dominant due to charm tagging.

 $Wbj/Wb\bar{b}$: Largest background that does not scale with charm tagging efficiency.

 $t\bar{t}$: Large cross-section is reduced by requiring low multiplicity of jets.

WW & Single Top: Reduced by appropriate angular cuts.

Simulation

• Generated signal and background events for $\sqrt{s} = 14$ TeV with Madgraph.

- Showered events with Pythia.
- Used PGS as the detector simulation.
- Used jet cone algorithm with cone-size 0.4.
- Assumed b-tagging efficiency of 60%
- Assumed light jet mis-tag rate of 1%.
- Basis cuts:
- 1. $E_T^l > 20 \text{ GeV}$ 2. $p_T^l > 20 \text{ GeV}$
- 3. $\eta_{j(l)} < 2.5$

Angular Cuts

• θ_{ij} angle between the ith and jth particle in the rest frame of the Higgs.

• θ_l^0 angle between the lepton in the rest frame of the $l\nu$ system and the direction of the *W* boost in the rest frame of the Higgs boson.

Dobrescue and Lykken

Signal Significance

Cuts	Signal	Wcj	WW	tī	Wbj	Single Top	Wcc	Wbb	Wjj
2 or 3 j, 1 tag, 1 l	282	183988	2585	25472	10492	9027	4722	2670	92936
MET > 30.0	189	111380	1818	20507	6838	7142	3059	1822	72863
p_T^{\prime} i 60.0	185	83027	1546	12937	5757	5271	2531	1504	51127
$\Delta \dot{\eta}_{lc} < 2.0$	152	49281	1246	7972	3824	2689	1718	1125	26320
$\Delta \phi_{ u c} < 1.5$	120	17003	192	2595	1436	764	387	323	7790
$\Delta \phi_{lj} < 2.0$	107	14193	161	1803	1200	591	344	275	5063
$\cos(\theta_{ib}) < -0.6$	85	6650	59	937	418	324	131	122	2127
$\cos(\theta_{ln}) < -0.8$	62	2671	31	214	178	65	66	59	524
$\cos \theta_l^0 < 0.2$	55	1950	24	193	149	56	46	45	270
45 < M _{ic} < 85 GeV	48	905	20	16	79	9	27	29	125
$140 < \dot{m_h} < 170 { m GeV}$	43	649	18	4	57	6	18	19	90

Number of Events per fb

• For $m_h = 160$ GeV, significance of 1.5σ in 1 fb⁻¹.

• If MET cut reduced to 20 GeV significance can be improved to 2 σ with 1 fb⁻¹.

• Changes in the charm-tagging efficiency affects only the signal, *Wcj* and *Wcc*.

Comparison of leptonic and semi-leptonic modes

• With 60% charm tagging efficiency and minimum MET cut of 30 GeV a 5 σ significance is possible with 10 fb⁻¹.

• The significance is independent of the b-tagging efficiency, but needs a small mistag rate of light jets.

• Improvements in the MET measurement can further enhance the significance.

Conclusions

- The semi-leptonic mode of the $gg \rightarrow h \rightarrow W^+W^-$ channel can be made competative with the leptonic mode with charm tagging, independent of b-tagging efficiency.
- Can independently measure the Higgs mass in this mode, unlike the leptonic mode.
- Improvements in MET measurement can further boost the significance in this channel.